AIDS Testing pp 141-169 | Cite as

Direct Detection of HIV Infection Using Nucleic Amplification Techniques

  • Gerald Schochetman
  • John J. Sninsky


Although infectious viral particles of human immunodeficiency virus (HIV) encapsidate single-stranded RNA (ssRNA) as the genetic information, the viral life cycle includes a compulsory conversion to double-stranded DNA (dsDNA), termed the provirus, which becomes integrated into the host cells’ chromosomes (see Chap. 2 for more details of the virus life cycle). The integrated provirus remains associated with the cellular chromosomal DNA for the life of the infected cell. Furthermore, the integrated provirus can either actively transcribe the genes for the structural proteins of the virus, which results in the assembly and release of infectious virions, or by selective transcription of only the complex array of viral regulatory genes remain transcriptionally constrained and thereby not release viral particles. The latter condition is frequently referred to as the “latent state.” Because proviral DNA is present regardless of the transcriptional state of the cell, early efforts targeted to direct detection of the virus used proviral DNA as a template.


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Human Immunodeficiency Virus Infection Direct Detection Human Immunodeficiency Virus Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harper MH, Marselle LM, Gallo RC, Wong-Staal F. Proc Natl Acad Sci USA 1986;83:772–776PubMedCrossRefGoogle Scholar
  2. 2.
    Shaw GM, Hahn BH, Arya SK, et al. Molecular characterization of human T-cell leukemia (lymphotropic) virus type III in the acquired immune deficiency syndrome. Science 1984;226:1165–1171PubMedCrossRefGoogle Scholar
  3. 3.
    Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerasecatalyzed chain reaction. Methods Enzymol 1987;155:335–350PubMedCrossRefGoogle Scholar
  4. 4.
    Saiki PK, Scharf S, Faloona F, et al. Enzymatic amplification of fl-globin genomic sequences and restriction site analysis for the diagnosis of sickle cell anemia. Science 1985;230:1350–1354PubMedCrossRefGoogle Scholar
  5. 5.
    Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988;239: 487–491PubMedCrossRefGoogle Scholar
  6. 6.
    Schochetman G, Ou C-Y, Jones W. Polymerase chain react on. 1988;158: 1154–1157Google Scholar
  7. 7.
    Hart C, Spira T, Moore J, et al. Direct detection of HIV RNA expression in seropositive subjects. Lancet 1988;2:596–599PubMedCrossRefGoogle Scholar
  8. 8.
    Byrne BC, Li JJ, Sninsky J, Poiesz BJ. Detection of H1V-1 RNA sequences by in vitro DNA amplification. Nucleic Acids Res 1988;16:4165PubMedCrossRefGoogle Scholar
  9. 9.
    Butcher A, Spadoro J., Using PCR. for detection of HIV-1 infection. Clin Immunol Newslett 1992;12:73–76CrossRefGoogle Scholar
  10. 10.
    Ou C-Y, Kwok S, Mitchell SW, et al. DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science 1988;239: 295–297PubMedCrossRefGoogle Scholar
  11. 11.
    Kwok S, Mack DH, Mullis KB, et al. Identification of human immunodeficiency virus sequences by using in vitro enzymatic amplification and oligomer cleavage detection. J Virol 1987;61:1690–1694PubMedGoogle Scholar
  12. 12.
    Kwok S, Mack DH, Sninsky JJ, et al. Diagnosis of human immunodeficiency virus in seropositive individuals: viral sequences in peripheral blood mononuclear cells. In Luciw PA, Steimen KS (eds): HIV Detection by Genetic Engineering Methods. New York Marcel Dekker, 1989:243–255Google Scholar
  13. 13.
    Kellogg DE, Kwok S. Detection of human immunodeficiency virus. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds): PCR Protocols. Orlando, FL: Academic Press, 1989:337–347Google Scholar
  14. 14.
    Ou C-Y, Schochetman G. Polymerase chain reaction in AIDS research. In Erlich HA, Gibbs R, Kazazian HH Jr (eds): Current Communications in Molecular Biology, Polymerase Chain Reaction. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1989:165–170Google Scholar
  15. 15.
    Meyerhans A, Cheynier R, Albert J. et al. Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations. Cell 1989;58:901–910PubMedCrossRefGoogle Scholar
  16. 16.
    Goodenow M, Huet T, Saurin W, et al. HIV-1 isolates are rapidly evolving quasispecies: evidence for viral mixtures and preferred nucleotide substitutions. J Acquir Immune Defic Synd 1989;2:344–352Google Scholar
  17. 17.
    Jackson JB, Kwok SY, Sninsky JJ, et al. Human immunodeficiency virus type 1 detected in all seropositive symptomatic and asymptomatic individuals. J Clin Microbiol 1990;28:16–19PubMedGoogle Scholar
  18. 18.
    Kellogg DE, Sninsky JJ, Kwok S. Quantitation of HIV-1 proviral DNA relative to cellular DNA by the polymerase chain reaction. Anal Biochem 1990;189:202–208PubMedCrossRefGoogle Scholar
  19. 19.
    Ou C-Y, McDonough SH, Cabanas D, et al. Rapid and quantitative detection of enzymatically amplified HIV-1 DNA using chemiluminescent oligonucleotide probes. AIDS Res Hum Retrovir 1990;6:1323–1329PubMedGoogle Scholar
  20. 20.
    Schnittman SM, Psallidopoulos MS, Lane HC, et al. The reservoir for HIV-1 in human peripheral blood is a T cell that maintains expression of CD4. Science 1990;245:305–308CrossRefGoogle Scholar
  21. 21.
    Ho DD, Moudgil T, Alam M. Quantitation of human immunodeficiency virus type 1 in the blood of infected persons. N Engl J Med 1989;321:1626–1625CrossRefGoogle Scholar
  22. 22.
    Coombs RW, Collier AC, Allain J-P, et al. Plasma viremia in human immunodeficiency virus infection. N Engl J Med 1989;321:1626–1631PubMedCrossRefGoogle Scholar
  23. 23.
    Ratner L. Measurement of human immunodeficiency virus load and its relation to disease progression. AIDS Res Hum Retrovir 1989;5:115–119PubMedCrossRefGoogle Scholar
  24. 24.
    Lion T, Nighet R, Hutchinson MA, Golomb HM, Brownstein BH. Rapid dot blot quantitation for viral DNA and amplified genes in less than 1000 cells. DNA 1989;8:361–367PubMedCrossRefGoogle Scholar
  25. 25.
    Schnittman SM, Greenhouse JJ, Miltiades BS, et al. Increasing viral burden in CD4+ T cells from patients with human immunodeficiency virus (HIV) infection reflects rapidly progressive immunosuppression and clinical disease. Ann Intern Med 1990;113:438–443PubMedGoogle Scholar
  26. 26.
    Simmonds P, Balfe P, Peutherer JF, et al. Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cell and at low copy numbers. J Virol 1990;64:864–872PubMedGoogle Scholar
  27. 27.
    Spear GT, Ou C-Y, Kessler HA, et al. Analysis of lymphocytes, monocytes, and neutrophils from human immunodeficiency virus (HIV) infected persons for HIV DNA. J Infect Dis 1990;162:1239–1244PubMedCrossRefGoogle Scholar
  28. 28.
    Hart C, Chang S-Y, Kwok S, et al. A replication-deficient HIV-1 DNA used for quantitation of the polymerase reaction (PCR). Nucleic Acids Res 1990; 18:4029–4030CrossRefGoogle Scholar
  29. 29.
    Clouse KA, Powell D, Washington I, et al. Monokine regulation of human immunodeficiency virus-1 expression in a chronically infected human T cell clone. J Immunol 1989;142:431–438PubMedGoogle Scholar
  30. 30.
    Wang AM, Doyle MV, Mark DF. Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci USA 1989;86:9717–9721PubMedCrossRefGoogle Scholar
  31. 31.
    Becker-Andre M, Hahlbrock K. Absolute mRNA quantification using the polymerase chain reaction (PCR): a novel approach by a PCR acided transcript titration assay (PATTY). Nucleic Acids Res 1989;17:9437–9446PubMedCrossRefGoogle Scholar
  32. 32.
    Gilliland G, Perrin S, Blanchard K, Bunn HF. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci USA 1990;87:2725–2729PubMedCrossRefGoogle Scholar
  33. 33.
    Murakawa GJ, Zaia JA, Spallone PA, et al. Direct detection of HIV-1 RNA from AIDS and ARC patient samples. DNA 1988;7:287–295PubMedCrossRefGoogle Scholar
  34. 34.
    Goudsmit J, Paul DA, Lange J, et al. Expression of human immunodeficiency virus antigen (HIV-Ag) in serum and cerebrospinal fluid during acute and chronic infection. Lancet 1986;2:177–180PubMedCrossRefGoogle Scholar
  35. 35.
    Kessler H, Blaauw B, Spear J, et al. Diagnosis of human immunodeficiency virus infection in seronegative homosexuals presenting with an acute viral syndrome. J AMA 1987;258:1196–1199Google Scholar
  36. 36.
    Ranki A, Valle S, Krohn M. Long latency precedes overt seroconversion in sexually transmitted human immunodeficiency virus infection. Lancet 1987; 2:589–593PubMedCrossRefGoogle Scholar
  37. 37.
    Simmonds P, Lainson FAL, Cuthbert R, et al. HIV infection and antibody detection: variable responses to infection in the Edinburgh haemophilic cohort. BMJ 1987;296:593–598CrossRefGoogle Scholar
  38. 38.
    Ward JW, Schable C, Dickinson GM, et al. Acute human immunodeficiency virus (HIV) infection: antigen detection and seroconversion in immunosuppressed patients. Transplantation 1989;47:722–724PubMedCrossRefGoogle Scholar
  39. 39.
    Loche M, Mach B., Identification of HIV-infected seronegative individuals by a direct diagnostic test based on hybridization to amplified viral DNA. Lancet 1988;2:418–421PubMedCrossRefGoogle Scholar
  40. 40.
    Wolinsky SM, Rinaldo CR, Kwok S, et al. Human immunodeficiency virus type 1 (HIV-1) infection a median of 18 months before a diagnostic Western blot: evidence from a cohort of homosexual men. Ann Intern Med 1989; 111:961–972PubMedGoogle Scholar
  41. 41.
    Hewlett IK, Gregg RA, Mayner RE, et al. Detection of HIV proviral DNA and p24 antigen in plasma prior to seroconversion. 1Vth Int Conf AIDS 1988;1:137Google Scholar
  42. 42.
    Imagawa DT, Lee MH, Wolinsky SM, et al. Human immunodeficiency virus type 1 infection in homosexual men who remain seronegative for prolonged periods. N Engl J Med 1989;320:1458–1462PubMedCrossRefGoogle Scholar
  43. 43.
    Horsburgh CR Jr, Ou C-Y, Jason J, et al. Duration of human immunodeficiency virus infection before detection of antibody. Lancet 1989;2:637–640PubMedCrossRefGoogle Scholar
  44. 44.
    Farzadegan H, Vlahov D, Solomon L, et al. Detection of human immunodeficiency virus type 1 infection by polymerase chain reaction in a cohort of seronegative intravenous drug users. J Infect Dis 1993;168:327–331PubMedCrossRefGoogle Scholar
  45. 45.
    Jackson JB, MacDonald KL, Cadwell J, et al. Absence of HIV infection in blood donors with indeterminate Western blot tests for antibody to HIV-1. N Engl J Med 1990;322:217–222PubMedCrossRefGoogle Scholar
  46. 46.
    George JR, Rayfield MA, Phillips S, et al. Efficacies of U.S. Food and Drug Administration-licensed HIV-1 screening enzyme immunoassays for detecting antibodies to HIV-2. AIDS 1989;4:321–326CrossRefGoogle Scholar
  47. 47.
    Rey F, Salaun D, Lesbordes JL, et al. HIV-1 and HIV-2 double infection in Central African Republic. Lancet 1986;2:1391–1392PubMedCrossRefGoogle Scholar
  48. 48.
    Rey MA, Girard PM, Harzic M, et al. HIV-1 and HIV-2 double infection in French homosexual male with AIDS related complex. Lancet 1987;1:388–389PubMedCrossRefGoogle Scholar
  49. 49.
    Foucault C, Lopez O, Jourdan G, et al, Double HIV-1 and HIV-2 seropositivity among blood donors. Lancet 1987;1:165–166CrossRefGoogle Scholar
  50. 50.
    Rayfield M, DeCock K, Heyward WL, et al. Mixed human immunodeficiency virus (HIV) infection of an individual: demonstration of both HIV type 1 and HIV type 2 proviral sequences by polymerase chain reaction. J Infect Dis 1988;158:170–176CrossRefGoogle Scholar
  51. 51.
    Centers for Disease Control. AIDS due to HIV-2 infection—New Jersey. MMWR 1988;37:33–35Google Scholar
  52. 52.
    Krivine A, Firtion G, Cao L, et al. HIV replication during the first weeks of life. Lancet 1992;339:1187–1189PubMedCrossRefGoogle Scholar
  53. 53.
    Rogers MF, Ou C-Y, Rayfield M, et al. Use of the polymerase chain reaction for early detection of the proviral sequences of human immunodeficiency virus in infants born to seropositive mothers. N Engl J Med 1989;320: 1649–1654PubMedCrossRefGoogle Scholar
  54. 54.
    Rogers MF, Ou C-Y, Kilbourne B, Schochetman G. Advances and problems in the diagnosis of HIV infection in infants. In Pizzo PA, Wilfert CM (eds): Pediatric AIDS, The Challenge of HIV Infection in Infants, Children and Adolescents. Baltimore: Williams & Wilkins, 1990;159–174Google Scholar
  55. 55.
    Chadwick EG, Yogev R, Kwok S, et al. Enzymatic amplification of the human immunodeficiency virus in peripheral blood mononuclear cells from pediatric patients. J Infect Dis 1989;160:954–959PubMedCrossRefGoogle Scholar
  56. 56.
    Pizzo PA, Eddy J, Falloon J, et al. Effects of continuous intravenous infusion of zidovudine (AZT) in children with symptomatic HIV infection. N Engl J Med 1988;319:889–896PubMedCrossRefGoogle Scholar
  57. 57.
    Larder BA, Darby G, Richman DD. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 1988;246: 1731–1734Google Scholar
  58. 58.
    Larder BA, Kemp SD. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 1989;246: 1155–1158PubMedCrossRefGoogle Scholar
  59. 59.
    Kellam P, Boucher CAB, Larder BA. Fifth mutation in human immunodeficiency virus type 1 reverse transcriptase contributes to the developmentof high-level resistance to zidovudine. Proc Natl Acad Sci USA 1992;89: 1934–1938PubMedCrossRefGoogle Scholar
  60. 60.
    Boucher CAB, Tersmette M, Lange JMA, et al. Zidovudine sensitivity of human immunodeficiency viruses from high-risk, symptom-free individuals during therapy. Lancet 1990;336:585–590PubMedCrossRefGoogle Scholar
  61. 61.
    Kozal MJ, Shafer RW, Winters MA, Katzenstein DA, Merigan TC. A mutation in human immunodeficiency virus reverse transcriptase and decline in CD4 lymphocyte numbers in long-term zidovudine recipients. J Infect Dis 1993;167:526–532PubMedCrossRefGoogle Scholar
  62. 62.
    Kwok S, Kellogg DE, McKinney N, et al. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nuclieic Acids Res 1990;18:999–1005CrossRefGoogle Scholar
  63. 63.
    St Clair MI1, Martin JL, Tudor-Williams G, et al. Resistance to ddl and sensitivity to AZT induced bya mutation in HIV-1 reverse transcriptase. Science 1991;235:1557–1559Google Scholar
  64. 64.
    Wainberg MA, Gu Z, Gao Q, et al. Clinical correlates and molecular basis of HIV drug resistance. J Acquir Immune Defic Syndr 1993;6(suppl 1): S536–546Google Scholar
  65. 65.
    Fitzgibbon JE, Howell RM, Haverzettl C, et al. Human immunodeficiency virus type 1 pol mutations which cause decreased susceptibility to 2’,3’dideoxycytidine. Antimicrobial Agents Chemother 1992;36:153–157CrossRefGoogle Scholar
  66. 66.
    Higuchi R, Kwok S., Avoiding false positives with PCR. Nature 1989;339: 237–238PubMedCrossRefGoogle Scholar
  67. 67.
    Longo MC, Berninger MS, Hartley JL. Use of uracil DNA glycosylase to control carryover contamination in polymerase chain reactions. Gene 1990; 93:125–128PubMedCrossRefGoogle Scholar
  68. 68.
    Sninsky JJ, Gates C. McKinney N, et al. dUTP and uracil-N-glycolase in the polymerase chain reaction: a resolution to carryover. In preparationGoogle Scholar
  69. 69.
    Chou Q, Russell M, Birch DE, Raymond J, Bloch W. Prevention of pre-PCR mispriming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res 1992;20:1717–1723PubMedCrossRefGoogle Scholar
  70. 69a.
    Persing DH, Cimino GD. Amplification product inactivation methods in diagnostic molecular microbiology: principles and application. In Persing DH, Smith TF, Tenover FC, White TJH (eds): ASM, Washington, D.C. 1983; pp 1050–121.Google Scholar
  71. 70.
    Sheppard HA, Ascher MS, Busch MP, et al. A multicenter proficiency trial of gene amplification (PCR) for the detection of HIV-1. J Acquir Immune Defic Syndr 1991;4:277–283PubMedGoogle Scholar
  72. 71.
    Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA. Analysis of enzymatically amplified beta-globin and HLA DO alpha with allele-specific oligonucleotide probes. Nature 1986;324:163–165PubMedCrossRefGoogle Scholar
  73. 72.
    Farzadeagan H, Polis MA, Wolinsky SM, et al. Loss of human immunodeficiency virus type 1 (HIV-1) antibodies with evidence of viral infection in asymptomatic men. Ann Intern Med 1988;108:785–790Google Scholar
  74. 73.
    Saiki R, Walsh R, Levenson CH, Erlich HA. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci USA 1989;86:6230–6234PubMedCrossRefGoogle Scholar
  75. 74.
    Anderson RE, Lang W, Shiboski S, et al. Use of β2-microglobulin level and CD4 lymphocyte count to predict development of acquried immunodeficiency virus infection. Arch Intern Med 1990;15:73–77CrossRefGoogle Scholar
  76. 75.
    Fahey JL, Taylor JMG, Detels R, et al. The prognostic value of cellular and serologic markers in infection with human immunodeficiency virus type 1. N Engl J Med 1990;322:166–172PubMedCrossRefGoogle Scholar
  77. 76.
    Ferre F. Quantitative or semi-quantitative PCR: reality versus myth. PCR Methods Appl 1992;2:1–9PubMedCrossRefGoogle Scholar
  78. 77.
    Clementi M, Menzo S, Bagnarelli P, et al. Quantitative PCR and RT-PCR in virology. PCR Methods Appl 1993;2:191–196PubMedCrossRefGoogle Scholar
  79. 78.
    Layne SP, Merges MJ, Dembo M, et al. Factors underlying spontaneous inactivation and susceptibility to neutralization of human immunodeficiency virus. Virology 1992;189:695–714PubMedCrossRefGoogle Scholar
  80. 79.
    Mulder J, McKinney N, Christopherson C, et al. A rapid and simple PCR assay for quantitation of IIIV-1 RNA in plasma: application to acute retro-viral infection. J Clin Microbial 1994;32:292–300Google Scholar
  81. 80.
    Myers TW, Gelfand DH. Reverse transcription and DNA amplification by a Thermus thermophilis DNA polymerase. Biochemistry 1991;30:7661–7666PubMedCrossRefGoogle Scholar
  82. 81.
    Young KKY, Resnick RM, Myers TW. Detection of hepatitis C virus RNA by a combined reverse transcription-polymerase chain reaction assay. J Clin Microbial 1993;31:882–886Google Scholar
  83. 82.
    Becker-Andre M, Hahlbrock K. Absolute mRNA quantification using the polymerase chain reaction (PCR): a novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Res 1989;17:9437–9446PubMedCrossRefGoogle Scholar
  84. 83.
    Gilliland G, Perrin S, Banchard K, Bunn HF. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci USA 1990;87:2725–2729PubMedCrossRefGoogle Scholar
  85. 84.
    Platak M, Saag MS, Yang LC, et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 1993;259: 1749–1754CrossRefGoogle Scholar
  86. 85.
    Wu DY, Wallace RB. The ligation amplification reaction (LAR)—amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 1989;4:560–569PubMedCrossRefGoogle Scholar
  87. 86.
    Kwoh DY, Davis GR, Whitfield KM, et al. Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc Natl Acad Sci USA 1989; 86:1173–1177PubMedCrossRefGoogle Scholar
  88. 87.
    Kievits T, van Gemen B, van Strijp D, et al. NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Methods 1991;35:273–286PubMedCrossRefGoogle Scholar
  89. 88.
    Van Gemen B, Kievits T. Schukkink R, et al. Quantification of HIV-1 RNA in plasma using NASBA during HIV-1 primary infection. J Virol Methods 1993;43:177–188PubMedCrossRefGoogle Scholar
  90. 89.
    Dragon EA. Handling reagents in the PCR laboratory. PCR Methods Appl 1993;3:S8–S9PubMedCrossRefGoogle Scholar
  91. 90.
    Hartley JL, Rashtchian A. Dealing with contamination: enzymatic control of carryover contamination in PCR. PCR Methods Appl 1993;3:S10–S14PubMedCrossRefGoogle Scholar
  92. 91.
    Haase AT, Retzel EF, Staskus KA. Amplification and detection of lentiviral DNA inside cells. Proc Natl Acad Sci USA 1990;87:4971–4975PubMedCrossRefGoogle Scholar
  93. 92.
    Nuovo GJ, MacConnell P, Forde A, Delvenne P. Detection of human papillomavirus DNA in formalin-fixed tissues by in situ hybridization after amplification by polymerase chain reaction. Am J Pathol 1991;139:847–854PubMedGoogle Scholar
  94. 93.
    Nuovo GJ, Becker J, Margiotta M, et al. Histological distribution of poly-merase chain reaction-amplified human papillomavirus 6 and 11 DNA in penile lesions. Am J Surg Pathol 1992;16:269–275CrossRefGoogle Scholar
  95. 94.
    Nuovo GJ, Margiotta M, Mac Connell P. Becker J. Rapid in situ detection of PCR-amplified HIV-1 DNA. Diagn Mol Pathol 1992;1:98–102PubMedGoogle Scholar
  96. 95.
    Bagasra O, Hauptman SP, Lischner HW, Sachs M, Pomerantz RJ. Detection of human immunodeficiency virus type-1 provirus in mononuclear cells by in situ polymerase chain reaction. N Engl J Med 1992;326:1385–1391PubMedCrossRefGoogle Scholar
  97. 96.
    Embretson J, Zupancic M, Beneke J, et al. Analysis of human immunodeficiency virus-infected tissues by amplification and in situ hybridization reveals latent and permissive infections at single-cell resolution. Proc Nat! Acad Sci USA 1993;90:357–361CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Gerald Schochetman
  • John J. Sninsky

There are no affiliations available

Personalised recommendations