Skip to main content

Probability Inequalities for Sums of Bounded Random Variables

  • Chapter
The Collected Works of Wassily Hoeffding

Part of the book series: Springer Series in Statistics ((PSS))

  • 2109 Accesses

Abstract

If S is a random variable with finite rnean and variance, the Bienaymé-Chebyshev inequality states that for x > 0,

$$\Pr \left[ {\left| {S - ES} \right| \geqslant x{{{(\operatorname{var} S)}}^{{1/2}}}} \right] \leqslant {{x}^{{ - 2}}}$$
((1))

If S is the surn of n independent, identically distributed random variables, then, by the central limit theorem*, as n → ∞, the probability on the left approaehes 2Ф( - x), where Ф(x) is the standard normal distribution function. For x large, Ф( - x) behaves as const. x -1 exp( - x2/2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, G. (1962). J. Amer. Statist. Ass., 57, 33–45.

    Article  MATH  Google Scholar 

  2. Bernstein, S. N. (1924). Učen. Zap. Naňc.-Issled. Kafedr Ukrainy, Old. Mat., 1, 30–49 (in Russian). [Reprinted in S. N. Bernstein, Collecled Works, Vol. IV. Nauka, Moscow, 1964 (in Russian).]

    Google Scholar 

  3. Bernstein, S. N. (1927). Probability Theory (in Russian). (Referred to in Uspensky [8].)

    Google Scholar 

  4. Bernstein, S. N. (1937). Dokl. Akad. Nauk SSSR, 17, 275–277 (in Russian). [Reprinted in S. N. Bernstein, Collecled Works, Vol. IV. Nauka, Moscow, 1964 (in Russian).]

    Google Scholar 

  5. Chernoff, H. (1952). Ann. Math. Statist., 23, 493–507.

    Article  MathSciNet  MATH  Google Scholar 

  6. Hoeffding, W. (1963). J. Amer. Statist. Ass., 58, 13–30.

    Article  MathSciNet  MATH  Google Scholar 

  7. Okamoto, M. (1958). Ann. Inst. Statist. Math., 10, 20–35.

    Google Scholar 

  8. Uspensky, J. V. (1937). Introduction to Mathematical Probability. McGraw-Hill, New York.

    MATH  Google Scholar 

  9. Yurinskii, V. V. (1976). J. Multivariate Anal., 6, 473–499.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fisher, N.I., Sen, P.K. (1994). Probability Inequalities for Sums of Bounded Random Variables. In: Fisher, N.I., Sen, P.K. (eds) The Collected Works of Wassily Hoeffding. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0865-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0865-5_47

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6926-7

  • Online ISBN: 978-1-4612-0865-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics