Skip to main content

Mathematical Problems in Classical Physics

  • Chapter

Part of the book series: Applied Mathematical Sciences ((AMS,volume 100))

Abstract

Mathematics is the name for those domains of theoretical physics that are temporarily unfashionable. The advantage of being unfashionable is that it presents the possibility of the rigorous and deep investigation of well-established mathematical models. A sleeping “physical theory” can be formulated as a chain of statements having exact mathematical meaning of mathematical conjectures. Such conjectures can then be proved or disproved. In many cases the mathematical problems arising this way are very difficult, and progress is rather slow. It is much easier to obtain a new result in an unexplored domain. Hence, most researchers carefully avoid any thinking on the old classical problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnold, Geometrical Method in the Theory of Ordinary Differential Equations. Springer-Verlag, New York, 1983.

    Book  Google Scholar 

  2. A. Tresse,Sur les invariants différentiels des groupes continus des transformations. Acta Mathematica 18,1–88 (1894).

    Article  MathSciNet  MATH  Google Scholar 

  3. V.I. Arnold, S.M. Gusein-Zade, and A.N. Varchenko, Singularities of Differentiable Maps. Vol. 1, Birkhäuser, Boston, 1985; Vol. 2, 1988.

    Book  MATH  Google Scholar 

  4. V.I. Arnold, Singularities of Caustics and Wave Fronts. Kluwer, Boston, 1991.

    Google Scholar 

  5. V.I. Arnold, Kolmogorov’s attractors. Proc. Roy. Soc.,A 434,No. 1890, 19–22 (1991).

    Article  Google Scholar 

  6. V.I. Arnold and E.L. Korkina, Growth of the magnetic field in a three-dimensional flow of uncompressible fluid. Vestn. Mosc. Univ. Ser. Math. Mech. (1983), no. 3, 43–46 (translated as Moscow Univ. Math. Bulletin).

    Google Scholar 

  7. U. Frish and D. Galloway, A numerical investigation of magnetic field generation in a flow with chaotic streamlines. Geophys. Astrophys. Fluid Dyn. 29,no. 1, 13–18 (1984).

    Article  Google Scholar 

  8. Ya. B. Zeldovich, Collected Works. Nauka, Moscow, 1986.

    Google Scholar 

  9. V.M. Alexeev, Quasirandom dynamical systems. Math. USSR-Sb. 5, 73–128 (1968); 6, 505–560 (1968); 7, 1–43 (1969).

    Article  Google Scholar 

  10. V.I. Arnold, The asymptotic Hopf invariant and its applications. In Materialy Vsesoysnoi Shkoly po Differentsialnym Uraneniyam Besconechnym Chislom Stepenei Svobody Dilizhane, Armenian Acad. of Sc.,1973; Erevan, 1974, pp. 229–256 [English translation: Selecta Math. Soy. 5,327–345 (1986)].

    Google Scholar 

  11. M.H. Freedman and Z.-X. He, Links of tori and energy of incompressible flows. Topology 30,283–287 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  12. V.I. Arnold and B.A. Khesin, Topological methods in hydrodynamics. Ann. Rev. Fluid Dyn. 24,145–166 (1992).

    Article  MathSciNet  Google Scholar 

  13. V.I. Arnold, S.F. Shandarin, and Yu.B. Zeldovich, The large-scale structure of the universe. J. Geophys. Astrophys. Fluid Dyn. 20,111–130 (1982).

    Article  MATH  Google Scholar 

  14. A.A. Roitvarf, On the motion of continuous media in a force field with a root singularity. Vestn. Mosc. Univ., no. 1, 65–68, 1987 (translated as Mosk. Univ. Math. Bull.).

    MathSciNet  Google Scholar 

  15. V.I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math. Surveys 18,no. 6, 85–193 (1963).

    Article  Google Scholar 

  16. V.I. Arnold, Stability problem and ergodic properties of classical dynamic systems. In Proceedings of International Congress of Mathematicians,Nauka, Moscow, 1966, pp. 387–392.

    Google Scholar 

  17. E.V. Gaidukov, Asymptotic geodesics on a Riemannian manifold nonhomeomorphic to the sphere. Soy. Math. Dokl., 7,no. 4, 1033–1035 (1966).

    MATH  Google Scholar 

  18. V.I. Arnold, Huygens, Barrow, Newton and Hooke, pioneers in mathematical analysis and catastrophe theory. In Eyolyents to Quasicrystals, Birkhäuser Verlag, Basel, 1990.

    Book  Google Scholar 

  19. V.I. Arnold, Problèmes résolubles et problèmes irresolubles analytiques et géométriques. To appear in Formes et Dynamique,Renaissance d’un Paradigme. Hommage à René Thom, Eshel, Paris, 1994.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arnold, V.I. (1994). Mathematical Problems in Classical Physics. In: Sirovich, L. (eds) Trends and Perspectives in Applied Mathematics. Applied Mathematical Sciences, vol 100. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0859-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0859-4_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6924-3

  • Online ISBN: 978-1-4612-0859-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics