Skip to main content

A Generalized Reduced Gradient Algorithm for Large-scale Trajectory Optimization Problems

  • Conference paper
Book cover Optimal Design and Control

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 19))

Abstract

This paper describes the design of a “sparse” nonlinear programming algorithm for a “large scale” flight optimization and sizing code. This program is designed to solve trajectory optimal control problems with path constraints. The direct transcription technique is applied to discretize an optimal control problem into a sparse, large scale parameter optimization problem for subsequent numerical solution by a nonlinear programming algorithm. This paper focuses on the design of a generalized reduced gradient algorithm to exploit the sparsity structure of the collocation equations.

This work was supported in part by an Aerospace Sponsored Research Grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Abadie and J. Carpentier; Generalization of the Wolfe reduced-gradient method to the case of nonlinear constraints, Optimization (Ed. by R. Fletcher), Academic, 1969.

    Google Scholar 

  2. U. Ascher, R. Mattheij, and R. Russell; Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Prentice Hall, Engle-wood Cliffs, 1988.

    MATH  Google Scholar 

  3. T. Beltracchi; A comparison of the generalized reduced gradient and generalized projected gradient methods, to appear.

    Google Scholar 

  4. T. Beltracchi; Optimization software modifications to study launch vehicle sizing trajectory design problems, AIAA Paper 94–4403, 5th AIAA /NASA/ USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 1994.

    Google Scholar 

  5. J. Betts and P. Frank; A sparse nonlinear optimization algorithm, AMS-TR-173, Boeing Computer Services, 1991.

    Google Scholar 

  6. J. Betts and W. Hallman; NLP2 optimization algorithm documentation, The Aerospace Corporation, Report No. TOR-0089(4464-06)-1, 1989.

    Google Scholar 

  7. J. Betts and W. Huffman; The application of sparse nonlinear programming to trajectory optimization, J. Guid. Cont. Dynam. 15, 1992.

    Google Scholar 

  8. K. Brenan; Differential-algebraic equations issues in the direct transcription of path constrained optimal control problems, Ann. Num. Math. 1, 1994, 247–263.

    MathSciNet  MATH  Google Scholar 

  9. K. Brenan, S. Campbell, and L. Petzold; Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Elsevier, New York, 1989.

    MATH  Google Scholar 

  10. K. Brenan and W. Hallman; A large-scale generalized reduced gradient algorithm for flight optimization and sizing problems, The Aerospace Corporation, Report No. ATR-94(8489)-3, 1994.

    Google Scholar 

  11. K. Brenan, W. Hallman, and W. Yeung; The design of a large-scale NLP code for trajectory optimization problems, The Aerospace Corporation, Report No. ATR-92(8189)-1, 1992.

    Google Scholar 

  12. A. Curtis, M. Powell, and J. Reid; On the estimation of sparse Jacobian matrices, J. Inst. Math. Appl. 13, 1974, 117–119.

    MATH  Google Scholar 

  13. C. De Boor and R. Weiss; SOLVEBLOK: a package for solving almost block diagonal linear systems, ACM Trans. Math. Soft. 6, 1980, 80–87.

    Article  MATH  Google Scholar 

  14. W. Govaerts and J. Pryce; Mixed block elimination for linear systems with wider borders, IMA J. Num. Anal. 13, 1993, 161–180.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Hallman; Optimization algorithm NLP3, The Aerospace Corporation, IOC A87-5752-45, 1987. (Aerospace internal document; not available for external distribution.)

    Google Scholar 

  16. W. Hallman; Optimal scaling techniques for the nonlinear programming problem, AIAA Paper 94-4417, 5th AIAA /NASA /USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 1994.

    Google Scholar 

  17. C. Hargraves and S. Paris; OTTS-optimal trajectories by implicit integration, Boeing Aerospace Co., Contract No. F33615-85-c-3009, 1988.

    Google Scholar 

  18. C. Hargraves and S. Paris; Direct trajectory optimization using nonlinear programming and collocation, AIAA J. Guid. Cont. Dynam. 10, 1987, 338–342.

    Article  MATH  Google Scholar 

  19. N. Higham; A survey of condition number estimation for triangular matrices, SIAM Review 29, 1987.

    Google Scholar 

  20. C. Lawson and R. Hanson; Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, 1974.

    MATH  Google Scholar 

  21. B. Murtagh and M. Saunders; MINOS/AUGMENTED user’s manual, Report SOL 80-14, Department of Operations Research, Stanford, 1980.

    Google Scholar 

  22. H. Nguyen; FONSIZE: a trajectory optimization and vehicle sizing program, The Aerospace Corporation, Report No. TOR-0091(6911-04)-1, 1991.

    Google Scholar 

  23. Y. Shi, R. Nelson, D. Young, P. Gill, W. Murray, and M. Saunders; The application of nonlinear programming and collocation to optimal aeroassisted orbital transfer trajectory, AIAA Paper 92-0734, 1992.

    Google Scholar 

  24. J. Tomlin; Pivoting for sparsity and size in linear programming inversion routines, J. Inst. Maths. Applics. 10, 1972, 289–295.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Tomlin; Maintaining a sparse inverse in the simplex method, IBM J. Res. Dev. 16, 1972,415–423.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this paper

Cite this paper

Brenan, K.E., Hallman, W.P. (1995). A Generalized Reduced Gradient Algorithm for Large-scale Trajectory Optimization Problems. In: Borggaard, J., Burkardt, J., Gunzburger, M., Peterson, J. (eds) Optimal Design and Control. Progress in Systems and Control Theory, vol 19. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0839-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0839-6_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6916-8

  • Online ISBN: 978-1-4612-0839-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics