Phase Transitions and Chemical Reactions

  • Walter Greiner
  • Ludwig Neise
  • Horst Stöcker
Part of the Classical Theoretical Physics book series (CLASSTHEOR)

Abstract

We now want to return to the important problem of how many state variables are actually necessary to uniquely determine the state of a system. To this end, we start from an isolated system which contains K different particle species (chemical components) and P different phases (solid, liquid, gaseous,…). Each phase can be understood as a partial system of the total system and one can formulate the first law for each phase, where we denote quantities of the i th phase by superscript i = 1,…, P. For reversible changes of state we have
$$ d{U^{\left( i \right)}} = {T^{\left( i \right)}}d{s^{\left( i \right)}} - {p^{\left( i \right)}}d{V^{\left( i \right)}} + \sum\limits_{l = 1}^k \mu _l^{\left( i \right)}dN_L^{\left( I \right)}dN_l^{\left( i \right)},i = 1,2,...P$$
(3.1)

Keywords

Entropy Acetone Steam Chloroform Boiling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Walter Greiner
    • 1
  • Ludwig Neise
    • 1
  • Horst Stöcker
    • 1
  1. 1.Institut für Theoretische PhysikJohann Wolfgang Goethe Universität Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations