The Cochlea pp 130-185 | Cite as

Homeostatic Mechanisms in the Cochlea

  • Philine Wangemann
  • Jochen Schacht
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 8)


The challenge of every cell is to maintain intracellular conditions that may vastly differ from the external environment, yet still communicate with this environment. Walter Cannon (1929) first applied the term “homeostasis” to the concept, originally formulated by Claude Bernard (1878), of the constancy of the milieu interne as essential for the existence of free-living organisms. Broadly defined, homeostasis represents the sum of the physiological processes in an organism, a multicellular system, or a cell that maintain the relative stability of its internal environment and thus provide the basis for its survival and function. The inner ear, as suggested by Hawkins (1973), possesses a variety of microhomeostatic mechanisms that sustain the integrity, sensitivity, and dynamic range of the organ of Corti. They make possible its function as a transducer, although they do not include the transduction process itself.


Hair Cell Basolateral Membrane Outer Hair Cell Homeostatic Mechanism Stria Vascularis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812–1815.PubMedCrossRefGoogle Scholar
  2. Altschuler RA, Lim HH, Ditto J, Dolan D, Raphael Y (1996) Protective mechanisms in the cochlea: heat shock proteins. In: Salvi RJ, Henderson D, Fiorini F, Colletti V (eds) Auditory Plasticity and Regeneration. New York: Tieman Medical Publications (in press).Google Scholar
  3. Ashmore JF, Ohmori H (1990) Control of intracelular calcium by ATP in isolated outer hair cells of the guinea-pig cochlea. J Physiol 428:109–131.PubMedGoogle Scholar
  4. Avila MA, Varela-Nieto I, Romero G, Mato JM, Giraldez F, Van de Water TR, Represa J (1993) Brain-derived neurotrophic factor and neurotrophin-3 support the survival and neuritogenesis response of developing cochleovestibular ganglion neurons. Dev Biol 159:266–275.PubMedCrossRefGoogle Scholar
  5. Bagger-Sjöbäck D, Filipek CS, Schacht J (1980) Characteristics and drug responses of cochlear and vestibular adenylate cyclase. Arch Otorhinolaryngol 228:217–222.PubMedCrossRefGoogle Scholar
  6. Bartolami S, Ripoll C, Planche M, Pujol R (1993) Localisation of functional muscarinic receptors in the rat cochlea: evidence for efferent presynaptic auto-receptors. Brain Res 626:200–209.PubMedCrossRefGoogle Scholar
  7. Bernard C (1878) Leçons sur les phénomènes de la vie. Paris: Baillière.Google Scholar
  8. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325.PubMedCrossRefGoogle Scholar
  9. Bobbin RP, Fallon M, Puel J-L, Bryant G, Bledsoe SC, Zajic G, Schacht J (1990) Acetylcholine, carbachol, and GABA induce no detectable change in the length of isolated outer hair cells. Hear Res 47:39–52.PubMedCrossRefGoogle Scholar
  10. Bobbin RP, Fallon M, Kujawa SG (1991) Magnitude of the negative summating potential varies with perilymph calcium leevls. Hear Res 56:101–110.PubMedCrossRefGoogle Scholar
  11. Bosher SK, Warren RL (1971) A study of the electrochemistry and osmotic relationships of the cochlear fluids in the neonatal rat at the time of the development of the endocochlear potential. J Physiol (Lond) 212:739–761.Google Scholar
  12. Bosher SK, Warren RL (1978) Very low calcium content of cochlear endolymph, an extracellular fluid. Nature 273:377–378.PubMedCrossRefGoogle Scholar
  13. Brechtelsbauer PB, Prazma J, Garrett CG, Carrasco VN, Pillsbury HC 3d (1990) Catecholaminergic innervation of the inner ear. Otolaryngol Head Neck Surg 103:566–574.PubMedGoogle Scholar
  14. Brechtelsbauer PB, Nuttall AL, Miller JM (1994) Basal nitric oxide production in regulation of cochlear blood flow. Hear Res 77:38–42.PubMedCrossRefGoogle Scholar
  15. Brown JN, Nuttall AL (1994) Autoregulation of cochlear blood flow in the guinea pig. Am J Physiol 266:458–467.Google Scholar
  16. Canlon B, Schacht J (1983) Acoustic stimulation alters deoxyglucose uptake in the mouse cochlea and inferior colliculus. Hear Res 10:217–226.PubMedCrossRefGoogle Scholar
  17. Canlon B, Homburger V, Bockaert J (1991) The identification and localization of the guanine nucleotide protein Go in the auditory system. Eur J Neurosci 3:1338–1342.PubMedCrossRefGoogle Scholar
  18. Cannon WB (1992) Organization for physiological homeostasis. Physiol Rev 9:399–431.Google Scholar
  19. Coling DE, Schacht J (1991) Protein phosphorylation in the organ of Corti: differential regulation by second messengers between base and apex. Hear Res 57:113–120.PubMedCrossRefGoogle Scholar
  20. Crist JR, Fallon M, Bobbin RP (1993) Volume regulation in cochlear outer hair cells. Hear Res 69:194–198.PubMedCrossRefGoogle Scholar
  21. Crone C (1965) Facilitated transfer of glucose from blood into brain tissue. J Physiol (Lond) 181:103–113.Google Scholar
  22. Dallos P (1973) Cochlear potentials. In: Dallos P (ed) The Auditory Periphery: Biophysics and Physiology. New York: Academic Press, pp. 218–390.Google Scholar
  23. Davis H (1957) Biophysics and physiology of the inner ear. Physiol Rev 37:1–49.PubMedGoogle Scholar
  24. Davis H (1965) A model for transducer action in the cochlea. Cold Spring Harbor Symp Quant Biol 30:181–190.CrossRefGoogle Scholar
  25. Dechesne CJ, Winsky L, Moniot B, Raymond J (1993) Localization of calretinin mRNA in rat and guinea pig inner ear by in situ hydridisation using radioactive and non-radioactive probes. Hear Res 69:91–97.PubMedCrossRefGoogle Scholar
  26. Ding JP, Salvi RJ, Sach F (1991) Stretch-activated ion channels in guinea pig outer hair cells. Hear Res 56:19–28.PubMedCrossRefGoogle Scholar
  27. Doi K, Mori N, Matsunaga T (1990) Effects of forskolin and 1,9-dideoxy-forskolin on cochlear potentials. Hear Res 45:157–163.PubMedCrossRefGoogle Scholar
  28. Doi T, Ohmori H (1993) Acetylcholine increases intracellular Ca2+ concentration and hyperpolarizes the guinea-pig outer hair cell. Hear Res 67:179–188.PubMedCrossRefGoogle Scholar
  29. Drescher DG, Upadhyay S, Wilcox E, Fex J (1992) Analysis of muscarinic receptor subtypes in the mouse cochlea by means of the polymerase chain reaction. J Neurochem 59:765–767.PubMedCrossRefGoogle Scholar
  30. Dulon D, Schacht J (1992) Motility of cochlear outer hair cells. Am J Otol 13:108–112.PubMedGoogle Scholar
  31. Dulon D, Aran J-M, Schacht J (1987) Osmotically induced motility of outer hair cells: implications for Meniere’s disease. Arch Otorhinolaryngol 244:104–107.PubMedCrossRefGoogle Scholar
  32. Dulon D, Zajic G, Schacht J (1989) Photo-induced irreversible shortening and swelling of isolated cochlear outer hair cells. Int J Radiat Biol 55:1007–1014.PubMedCrossRefGoogle Scholar
  33. Dulon D, Zajic G, Schacht J (1990) Increasing intracellular free calcium induces circumferential contractions in isolated outer hair cells. J Neurosci 10:1388–1397.PubMedGoogle Scholar
  34. Dulon D, Mollard P, Aran J-M (1991) Extracellular ATP elevates cytosolic Ca2+ incochlear inner hair cells. NeuroReport 2:69–72.PubMedCrossRefGoogle Scholar
  35. Dulon D, Moataz R, Mollard P (1993) Characterization of Ca2+ signals generated by extracellular nucleotides in supporting cells of the organ of Corti. Cell Calcium 14:245–254.PubMedCrossRefGoogle Scholar
  36. Dulon D, Zajic G, Schacht J (1993) InsP3 releases intracellular stored calcium in Deiters’ cells of the organ of Corti. Abs Assoc Res Otolaryngol 16:117.Google Scholar
  37. Dulon D, Blanchet C, Laffon E (1994) Photo-released intracellular Ca2+ evokes reversible mechanical responses in supporting cells of the guinea-pig organ of Corti. Biochem Biophys res Commun 201:1263–1269.PubMedCrossRefGoogle Scholar
  38. Duvall AJ, Rhodes VT (1967) Reissner’s membrane. An ultrastructural study. Arch Ototlaryngol 86:143–151.CrossRefGoogle Scholar
  39. ElBarbary A, Altschuler R, Schacht J (1993) Glutathione S-transferase in the organ of Corti of the rat: enzymatic activity, subunit composition and immunohistochemical localization. Hear Res 71:80–90.CrossRefGoogle Scholar
  40. Erostegui C, Norris CH, Bobbin RP (1994) In vitro pharmacologic characterization of a cholinegic receptor on outer hair cells. Hear Res 74:135–147.PubMedCrossRefGoogle Scholar
  41. Erulkar SD, Maren TH (1961) Carbonic anhydrase in the inner ear. Nature 189:459–460.PubMedCrossRefGoogle Scholar
  42. Eveloff JL, Warnock DG (1987) Activation of ion transport systems during cell volume regulation. Am J Physiol 252:F1–F10.PubMedGoogle Scholar
  43. Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73:309–373.PubMedGoogle Scholar
  44. Eybalin M, Pujol R (1983) A radioautographic stdy of [3H]L-glutamate and [3H]L-glutamine uptake in the guinea pig cochlea. Neuroscience 9:863–871.PubMedCrossRefGoogle Scholar
  45. Eybalin M, Ripoll C (1990) Immunolocalisation de la parvalbumine dans deux types de cellules glutamatergiques de la cochlée du cobaye: les cellules ciliées internes et les neurones du ganglion spiral. CR Acad Sci Paris 310:639–644.Google Scholar
  46. Eybalin M, Parnaud C, Geffard M, Pujol R (1988) Immunoelectron microscopy identifies several types of GABA-containing efferent synapses in the guinea-pig organ of Corti. Neuroscience 24:29–38.PubMedCrossRefGoogle Scholar
  47. Farber JL (1990) The role of calcium in lethal cell injury. Chem Res Toxicol 3:503–508.PubMedCrossRefGoogle Scholar
  48. Ferrary E, Sterkers O, Saumon G, Tran Ba Huy P, Amiel C (1987) Facilitated transfer of glucose from blood into perilymph in the rat cochlea. Am J Physiol 253:F59–F65.PubMedGoogle Scholar
  49. Ferrary E, Tran Ba Huy P, Roinel N, Bernard C, Amiel C (1988) Calcium and the inner ear fluids. Acta Otolaryngol Suppl (Stockh) 460:13–17.CrossRefGoogle Scholar
  50. Ferrary E, Bernard C, Oudar O, Sterkers O, Amiel C (1989) Sodium transfer from endolymph through a luminal amiloride-sensitive channel. Am J Physiol 257:F182–F189.PubMedGoogle Scholar
  51. Ferrary E, Barnard C, Oudar O, Loiseau A, Sterkers O, Amiel C (1993) N-Ethylmaleimide-inhibited electrogenic K+ secretion in the ampulla of the frog semicircular canal. J Physiol (Lond) 461:451–465.Google Scholar
  52. Fessenden JD, Coling DE, Schacht J (1994) Detection and characterization of nitric oxide synthase in the mammalian cochlea. Brain Res 668:9–15.PubMedCrossRefGoogle Scholar
  53. Flock A, Flock B, Ulfendahl M (1986) Mechanisms of movement in OHCs and a possible structural basis. Arch Otorhinolaryngol 243:83–90.PubMedCrossRefGoogle Scholar
  54. Fonnum F (1991) Neurochemical studies on glutamate-mediated neurotransmission. In: Meldrum BS, Moroni F, Woods JH (eds) Excitatory Amino Acids. New York: Raven Press, pp. 15–25.Google Scholar
  55. Foster JD, Drescher MJ, Hatfield JS, Drescher DG (1994) Immunohistochemical localization of S-100 protein in auditory and vestibular end organs of the mouse and hamster. Hear Res 74:67–76.PubMedCrossRefGoogle Scholar
  56. Fuchs PA, Murrow BW (1992a) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12:800–809.PubMedGoogle Scholar
  57. Fuchs PA, Morrow BW (1992b) A novel cholinergic receptor mediates inhibition of chick cochlear hair cells. Proc R Soc Lond B 248:35–40.CrossRefGoogle Scholar
  58. Gitter AH (1992) The length of isolated outer hair cells is temperature dependent. ORL 54:121–123.PubMedCrossRefGoogle Scholar
  59. Gross PM, Teasdale GM, Anerson WJ, Harper AM (1981) FP-receptors mediate increases in permeability of the blood-brain barrier during arterial histamine infusion. Brain Res 210:396–400.PubMedCrossRefGoogle Scholar
  60. Guiramand J, Mayat E, Bartolami S, Lenoir M, Rumigny J-F, Pujol R, Récasens M (1990) A M3 muscarinic receptor coupled to inositol phosphate formation in the rat cochlea? Biochem Pharmacol 39:1913–1919.PubMedCrossRefGoogle Scholar
  61. Gulley RL, Reese TS (1976) Intercellular junctions in the reticular lamina of the organ of Corti. J Neurocytol 5:479–507.PubMedCrossRefGoogle Scholar
  62. Gulley RL, Fex J, Wenthold RJ (1979) Uptake of putative transmitters in the organ of Corti. Acta Otolaryngol 88:177–182.PubMedCrossRefGoogle Scholar
  63. Guth PS, Stockwell M (1977) Guanylate cyclase and cyclic guanosine monophosphate in the guinea-pig cochlea. J Neurochem 28:263–265.PubMedCrossRefGoogle Scholar
  64. Hara A, Salt AN, Thalmann R (1989) Perilymph composition in scala tympani of the cochlea: influence of cerebrospinal fluid. Hear Res 42:265–271.PubMedCrossRefGoogle Scholar
  65. Harada N, Ernst A, Zenner HP (1993) Hyposmotic activation hyperpolarizes outer hair cells of guinea pig cochlea. Brain Res 614:205–211.PubMedCrossRefGoogle Scholar
  66. Hawkins JE Jr (1971) The role of vasoconstriction in noise-induced hearing loss. Ann Otol Rhinol Laryngol 80:903–913.PubMedGoogle Scholar
  67. Hawkins JE (1973) Comparative otopathology: aging, noise, and ototoxic drugs. Adv Otorhinolaryngol 20:125–141.PubMedGoogle Scholar
  68. Hawkins JE Jr, Johnsson L-G, Preston RE (1972) Cochlear microvasculature in normal and damaged ears. Laryngoscope 82:1091–1104.PubMedCrossRefGoogle Scholar
  69. Henson JH, Begg DA, Beaulieu SM, Fishkind DJ, Bonder EM, Terasaki M, Lebeche D, Kaminer B (1989) A calsequestrin-like protein in the endoplasmic reticulum of the sea urchin: localization and dynamics in the egg first cell cycle embryo. J Cell Biol 109:149–161.PubMedCrossRefGoogle Scholar
  70. Holley MC, Richardson GP (1994) Monoclonal antibodies specific for endoplasmic membranes of mammalian cochlear outer hair cells. J Neurocytol 23:87–96.PubMedCrossRefGoogle Scholar
  71. Housley GD, Ashmore JF (1991) Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea. Proc R Soc Lond B 244:161–167.CrossRefGoogle Scholar
  72. Housley GD, Greenwood D, Ashmore JF (1992) Localization of cholinergic and purinergic receptors on outer hair cells isolated from the guinea-pig cochlea. Proc R Soc Lond B 249:265–273.CrossRefGoogle Scholar
  73. Ikeda K, Morizono T (1989) Electrochemical profiles for monovalent ions in the stria vascularis: cellular model of ion transport mechanisms. Hear Res 39:279–286.PubMedCrossRefGoogle Scholar
  74. Ikeda K, Morizono T (1990) Electrochemical aspects of cations in the cochlear hair cell of the chinchilla: a cellular model of the ion movement. Eur Arch Otorhinolaryngol 247:43–47.PubMedCrossRefGoogle Scholar
  75. Ikeda K, Takasaka T (1993) Confocal laser microscopical images of calcium distribution and intracellular organelles in the outer hair cell isolated from the guinea pig cochlea. Hear Res 66:169–176.PubMedCrossRefGoogle Scholar
  76. Ikeda K, Kusakari J, Takasaka T, Saito Y (1987) The Ca2+ activity of cochlear endolymph of the guinea pig and the effect of inhibitors. Hear Res 26:117–125.PubMedCrossRefGoogle Scholar
  77. Ikeda K, Saito Y, Sunose H, Nishiyama A, Takasaka T (1991) Effects of neuroregulators on the intracellular calcium level in the outer hair cell isolated from the guinea pig. ORL 53:78–81.PubMedCrossRefGoogle Scholar
  78. Ikeda K, Saito Y, Nishiyama A, Takasaka T (1992a) Intracellular pH regulation in isolated cochlear outer hair cells of the guinea pig. J Physiol 447:627–648.PubMedGoogle Scholar
  79. Ikeda K, Saito Y, Nishiyama A, Takasaka T (1992b) Sodium-calcium exchange in the isolated cochlear outer hair cells of the guinea pig studied by fluorescence image microscopy. Pflügers Arch 420:493–499.PubMedCrossRefGoogle Scholar
  80. Ikeda K, Sunose H, Takasaka T (1993) Effects of free radicals on the intracellular calcium concentration in the isolatd outer hair cell of the guinea pig cochlea. Acta Otolaryngol (Stockh) 113:137–141.CrossRefGoogle Scholar
  81. Inamura N, Salt AN (1992) Permeability changes of the blood-labyrinth barrier measured in vivo during experimental treatments. Hear Res 61:12–18.PubMedCrossRefGoogle Scholar
  82. Ishiyama E, Keels EW, Weibel J (1970) New anatomical aspects of the vasculoepithelial zone of the spiral limbus in mammals. An electron microscopic study. Acta Otolaryngol (Stockh) 70:319–328.CrossRefGoogle Scholar
  83. Ito M, Spicer SS, Schulte BA (1993) Immunohistochemical localization of brain type glucose transporter in mammalian inner ears: comparison of developmental and adult stages. Hear Res 71:230–238.PubMedCrossRefGoogle Scholar
  84. Iwano T, Yamamoto A, Omori K, Akayama M, Kumazawa T, Tashiro Y (1989) Quantitative immunocytochemical localization of Na+, K +-ATPase a-subunit in the lateral wall of rat cochlear duct. J Histochem Cytochem 37:353–363.PubMedCrossRefGoogle Scholar
  85. Iwasa KH, Mizuta K, Lin DJ, Benos DJ, Tachibana M (1994) Amiloride-sensitive channels in marginal cells in the stria vascularis of the guinea pig cochlea. Neurosci Lett 172:163–166.PubMedCrossRefGoogle Scholar
  86. Jahnke K (1975) The fine structure of free-fractured intercellular junctions in the guinea pig inner ear. Acta Otolaryngol Suppl (Stoch) 336:1–40.Google Scholar
  87. Jahnke K (1980) The blood-perilymph barrier. Arch Otorhinolaryngol 228:29–34.PubMedCrossRefGoogle Scholar
  88. Johnstone BM, Sellick PM (1972) The peripheral auditory apparatus. Q Rev Biophys 5:1–57.CrossRefGoogle Scholar
  89. Johnstone BM, Patuzzi R, Syka J, Sykova E (1989) Stimulus-related potassium changes in the organ of Corti of guinea-pig. J Physiol (Lond) 408:77–92.Google Scholar
  90. Jones-Mumby CJ, Axelsson A (1984) The vascular anatomy of the gerbil cochlea. Am J Otolaryngol 5:127–137.PubMedCrossRefGoogle Scholar
  91. Juhn SK, Youngs JN (1976) The effect on perilymph of the alteration of serum glucose or calcium concentration. Laryngoscope 86:273–279.PubMedCrossRefGoogle Scholar
  92. Juhn SK, Rybak LP, Prado S (1981) Nature of blood-labyrinth barrier in experimental conditions. Ann Otol Rhinol Laryngol 90:135–141.PubMedGoogle Scholar
  93. Julien N, Loiseau A, Sterkers O, Amiel C, Ferrary E (1994) Antidiuretic hormone restore the endolymphatic longitudinal K+ gradient in the Brattleboro rat cochlea. Pflügers Arch 426:446–452.PubMedCrossRefGoogle Scholar
  94. Kambayashi J, Kobayashi T, Demott JE, Marcus NY, Thalmann I, Thalmann R (1982a) Effect of substrate-free vascular perfusion upon cochlear potentials and glycogen of the stria vascularis. Hear Res 6:223–240.PubMedCrossRefGoogle Scholar
  95. Kambayashi J, Kobayashi T, Demott JE, Marcus NY, Thalmann I, Thalmann R (1982b) Minimal concentrations of metabolic substrates capable of supporting cochlear potentials. Hear Res 7:105–114.PubMedCrossRefGoogle Scholar
  96. Katzman R (1976) Maintenance of a constant brain extracellular potassium. Fed Proc 35:1244–1247.PubMedGoogle Scholar
  97. Kerr TP, Ross MD, Ernst SA (1982) Cellular localization of Na+, K+-ATPase in the mammalian cochlear duct: significance for cochlear fluid balance. Am J Otolaryngol 3:332–338.PubMedCrossRefGoogle Scholar
  98. Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berlin) 191:101–118.CrossRefGoogle Scholar
  99. Kimura RS (1969) Distribution, structure, and function of dark cells in the vestibular labyrinth. Ann Otol Rhinol Laryngol 78:542–561.PubMedGoogle Scholar
  100. Kimura RS, Nye CL, Southard RE (1990) Normal and pathologic features of the limbus spiralis and its functional significance. Am J Otolaryngol 11:99–111.PubMedCrossRefGoogle Scholar
  101. Koch T, Zenner HP (1988) Adenylate cyclase and G-proteins as a signal transfer system in the guinea pig inner ear. Arch Otorhinolaryngol 245:82–87.PubMedCrossRefGoogle Scholar
  102. Koch T, Gloddek B, Gutzke S (1992) Binding sites of atrial natriuretic peptide (ANP) in the mammalian cochlea and stimulation of cyclic GMP synthesis. Hear Res 63:197–202.PubMedCrossRefGoogle Scholar
  103. Komune S, Nakagawa T, Hisashi K, Kimituki T, Uemura T (1993) Movement of monovalent ions across the membranes of marginal cells of the stria vascularis in the guinea pig cochlea. ORL J Otorhinolaryngol Relat Spec 55:61–67.PubMedCrossRefGoogle Scholar
  104. Konishi T, Butler RA, Fernández C (1961) Effect of anoxia on cochlear potentials. J Acoust Soc Am 33:349–356.CrossRefGoogle Scholar
  105. Konishi T, Hamrick PE (1978) Ion transport in the cochlea of guinea pig. II. Chloride transport. Acta Otolaryngol (Stockh) 86:176–184.CrossRefGoogle Scholar
  106. Konishi T, Kelsey E (1973) Effect of potassium deficiency on cochlear potentials and cation contents of the endolymph. Acta Otolaryngol (Stockh) 76:410–418.CrossRefGoogle Scholar
  107. Konishi T, Mendelsohn M (1970) Effect of oubain on cochlear potentials and endolymph composition in guinea pigs. Acta Otolaryngol (Stockh) 69:192–199.CrossRefGoogle Scholar
  108. Konishi T, Mori H (1984) Permeability to sodium ions of the endolymph-perilymph barrier. Hear Res 15:143–149.PubMedCrossRefGoogle Scholar
  109. Konishi T, Hamrick PE, Walsh PJ (1978) Ion transport in guinea pig cochlea. I. Potassium and sodium transport. Acta Otolaryngol (Stockh) 86:22–34.CrossRefGoogle Scholar
  110. Konishi T, Hamrick PE, Mori H (1984) Water permeability of the endolymph-perilymph barrier in the guinea pig cochlea. Hear Res 15:51–58.PubMedCrossRefGoogle Scholar
  111. Kronester-Frei A (1979) The effect of changes in endolymphatic ion concentrations on the tectorial membrane. Hear Res 1:81–94.PubMedCrossRefGoogle Scholar
  112. Kuijpers W, Bonting SL (1969) Studies on (Na+ -K+)-ATPase. XXIV. Localization and properties of ATPase in the inner ear of the guinea pig. Biochim Biophys Acta 173:477–485.PubMedCrossRefGoogle Scholar
  113. Kuijpers W, Bonting SL (1970) The cochlear potentials. II. The nature of the cochlear endolymphatic resting potential. Pflügers Arch 320:359–372.PubMedCrossRefGoogle Scholar
  114. Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1992) Intracochlear application of acetylcholine alters sound-induced mechanical events within the cochlear partition. Hear Res 61:106–116.PubMedCrossRefGoogle Scholar
  115. Kujawa SG, Fallon M, Bobbin RP (1994) ATP antagonists cibaron blue, basilen blue and suramin alter sound-evoked responses of the cochlea and eighth nerve. Hear Res 78:181–188.PubMedCrossRefGoogle Scholar
  116. Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1994) A nicotinic-like receptor mediates suppression of distortion product otoacoustic emissions by contralateral sound. Hear Res 74:122–134.PubMedCrossRefGoogle Scholar
  117. Kusakari J, Ise I, Comegys TH, Thalmann I, Thalmann R (1978a) Effect of ethacrynic acid, furosemide, and ouabain upon the endolymphatic potential and upon high energy phosphates of the stria vascularis. Laryngoscope 88:12–37.PubMedGoogle Scholar
  118. Kusakari J, Ise I, Comegys TH, Thalmann I, Thalmann R (1978b) Reduction of the endocochlear potential by the new “loop” diuretic, bumetanide. Acta Otolaryngol (Stockh) 86:336–341.Google Scholar
  119. Lamm K, Zajic G, Schacht J (1994) Living isolated smooth muscle cells, pericytes and endothelial cells from inner ear vessels: a new approach to study the regulation of cochlear microcirculation and permeability. Hear Res 81:83–90.PubMedCrossRefGoogle Scholar
  120. Laurikainen EA, Kim D, Didier A, Ren T, Miller JM, Quirk WS, Nuttall AL (1993) Stellate ganglion drives sympathetic regulation of cochlear blood flow. Hear Res 64:199–204.PubMedCrossRefGoogle Scholar
  121. Lawrence M, Nuttall AL (1972) Oxygen availability in tunnel of Corti measured by microelectrode. J Acoust Soc Am 52:566–573.CrossRefGoogle Scholar
  122. Legrand C, Brehier A, Clavel MC, Thomasset M, Rabie A (1988) Cholecalcin (28-kDa CaBP) in the rat cochlea. Development in normal and hypothyroid animals. An immunocytochemical study. Brain Res 466:121–129.PubMedGoogle Scholar
  123. Lim D, Karabinas C, Trune DR (1983) Histochemical localization of carbonic anhydrase in the inner ear. Am J Otolaryngol 4:33–42.PubMedCrossRefGoogle Scholar
  124. Lim HH, Jenkins OH, Myers MW, Miller JM, Altschuler RA (1993) Detection of HSP 72 synthesis after acoustic overstimulation in rat cochlea. Hear Res 69:146–150.PubMedCrossRefGoogle Scholar
  125. Liu J, Kozakura K, Marcus DC (1995) Evidence for purinergic receptors in vestibular dark cell and strial marginal cell epithelia of the gerbil. Audit Neurosci 1:331–340.Google Scholar
  126. Loewenstein WR (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 61:829–913.PubMedGoogle Scholar
  127. Loewenstein WR, Nakas M, Socolar SJ (1967) Junctional membrane uncoupling. Permeability transformation at a cell membrane junction. J Gen Physiol 50:1865–1891.PubMedCrossRefGoogle Scholar
  128. Marcus DC (1984) Characterization of potassium permeability of cochlear duct by perilymphatic perfusion of barium. Am J Physiol 247:C240–C246.PubMedGoogle Scholar
  129. Marcus DC, Shen Z (1994) Slowly activating, voltage-dependent K+ conductance is apical pathway for K+ secretion in vestibular dark cells. Am J Physiol Cell Physiol 267:C857–864.Google Scholar
  130. Marcus DC, Shipley A (1994) Potassium secretion by vestibular dark cell epithelium demonstrated by vibrating probe. Biophys J 66:1939–1942.PubMedCrossRefGoogle Scholar
  131. Marcus DC, Marcus NY, Thalmann R (1981) Changes in cation contents of stria vascularis with ouabain and potassium-free perfusion. Hear Res 4:149–160.PubMedCrossRefGoogle Scholar
  132. Marcus DC, Rokugo M, Ge XX, Thalmann R (1983) Response of cochlear potentials to presumed alterations of ionic conductance: endolymphatic perfusion of barium, valinomycin and nystatin. Hear Res 12:17–30.PubMedCrossRefGoogle Scholar
  133. Marcus DC, Rokugo M, Thalmann R (1985) Effects of barium and ion substitutions in artificial blood on endocochlear potential. Hear Res 17:79–86.PubMedCrossRefGoogle Scholar
  134. Marcus DC, Marcus NY, Greger R (1987) Sidedness of action of loop diuretics and ouabain on nonsensory cells of utricle: a micro-Ussing chamber for inner ear tissues. Hear Res 30:55–64.PubMedCrossRefGoogle Scholar
  135. Marcus DC, Takeuchi S, Wangemann P (1992) Ca2+-activated nonselective cation channel in apical membrane of vestibular dark cells. Am J Physiol 262:C1423–C1429.PubMedGoogle Scholar
  136. Marcus DC, Takueuchi S, Wangemann P (1993) Two types of chloride channel in the basolateral membrane of vestibular dark cell epithelium. Hear Res 69:124–132.PubMedCrossRefGoogle Scholar
  137. Marcus DC, Liu J, Shiga N, Wangemann P (1994) N-Ethylmaleimide stimulates and inhibits ion transport in vestibular dark cells of gerbil. Audit Neurosci 1:101–109.Google Scholar
  138. Marcus DC, Liu J, Wangemann P (1994) Transepithelial voltage and resistance of vestibular dark cell epithelium from the gerbil ampulla. Hear Res 73:101–308.PubMedCrossRefGoogle Scholar
  139. Martin AR, Fuchs PA (1992) The dependence of calcium-activated potassium currents on membrane potential. Proc R Soc Lond B 250:71–76.CrossRefGoogle Scholar
  140. McGuirt JP, Schulte BA (1994) Distribution of immunoreactive α and β subunit isoforms of Na+, K+ ATPase in the gerbil inner ear. J Histochem Cytochem 42:843–853.CrossRefGoogle Scholar
  141. McLaren GM, Quirk WS, Laurikainen E, Coleman JKM, Seidman MD, Dengerink HA, Nuttall AL, Miller JM, Wright JW (1993) Substance P increases cochlear blood flow without changing cochlear electrophysiology in rats. Hear Res 71:183–189.CrossRefGoogle Scholar
  142. Melichar I, Syka J (1987) Electrophysiological measurements of the stria vascularis potentials in vivo. Hear Res 25:35–43.PubMedCrossRefGoogle Scholar
  143. Meyer zum Gottesberg A, Lamprecht J (1989) Localization of the atrial natriuretic peptide binding sites in the inner ear tissue—possibly an additional regulating system. Acta Otolaryngol (Stockh) Suppl 468:53–57.CrossRefGoogle Scholar
  144. Milner RE, Baksh S, Shemanko C, Carpenter MR, Smillie L, Vance JE, Opas M, Michalak M (1991) Calretinin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem 266:7155–7165.PubMedGoogle Scholar
  145. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharm Rev 43:109–42.PubMedGoogle Scholar
  146. Morimoto RI (1993) Cells in strses: transcriptional activation of heat shock genes. Science 259:1409–1410.PubMedCrossRefGoogle Scholar
  147. Murray SA, Plummer HK III, Leonard EE Jr, Deshmukh P (1993) Regulation of the 12-O-tetradecanoyl-phorbol-l3-acetate-induced inhibition of intercellular communication. Anat Rec 235:1–11.PubMedCrossRefGoogle Scholar
  148. Myers MW, Quirk WS, Rizk SS, Miller JM, Altschuler RA (1992) Expression of the major mammalian stress protein in the rat cochlea following transient ischemia. Laryngoscope 102:981–987.PubMedCrossRefGoogle Scholar
  149. Nairn AC, Hemmings HC, Greengard P (1985) Protein kinases in the brain. Annu Rev Biochem 54:931–976.PubMedCrossRefGoogle Scholar
  150. Nakazawa K, Spicer SS, Schulte BA (1995) Postnatal expression of the facilitated glucose transporter, GLUTS, in gerbil outer hair cells. Hear Res 82:93–99.PubMedCrossRefGoogle Scholar
  151. Niedzielski AS, Schacht J (1991) Phospholipid metabolism in the cochlea: differences between base and apex. Hear Res 57:107–112.PubMedCrossRefGoogle Scholar
  152. Niedzielski AS, Schacht J (1992) P2 purinoceptors stimulate inositol phosphate release in the organ of Corti. Neuroreport 3:273–275.PubMedCrossRefGoogle Scholar
  153. Niedzielski AS, Ono T, Schacht J (1992) Cholinergic regulation of the phosphoi-nositide second messenger system in the organ of Corti. Hear Res 59:250–254.PubMedCrossRefGoogle Scholar
  154. Nilles R, Järlebark L, Zenner HP, Heilbronn E (1994) ATP-induced cytoplasmic [Ca2+] increases in isolated cochlear outer hair cells. Involved receptor and channel mechanisms. Hear Res 73:27–34.PubMedCrossRefGoogle Scholar
  155. Nishizuka Y (1992) Signal transduction: crosstalk. Trends Biochem Sci 17:367.CrossRefGoogle Scholar
  156. Oesterle EC, Dallos P (1989) Intracellular recordings from supporting cells in the guinea-pig cochlea: AC potentials. J Acoust Soc Am 86:1013–1032.PubMedCrossRefGoogle Scholar
  157. Oesterle EC, Dallos P (1990) Intracellular recordings from supporting cells in the guinea-pig cochlea: DC potentials. J Neurophysiol 64:617–636.PubMedGoogle Scholar
  158. Offner FF (1991) Ion flow through membranes and the resting potential of cells. Membr Biol 123:171–182.CrossRefGoogle Scholar
  159. Offner FF, Dallos P, Cheatham MA (1987) Positive endocochlear potential: mechanism of production by marginal cells of stria vascularis. Hear Res 29:117–124.PubMedCrossRefGoogle Scholar
  160. Ogawa K, Schacht J (1993) Receptor-mediated release of inositol phosphates in the cochlear and vestibular sensory epithelia of the rat. Hear Res 69:207–214.PubMedCrossRefGoogle Scholar
  161. Ogawa K, Schacht J (1994) G-proteins coupled to phosphoinositide hydrolysis in the cochlear and vestibular epithelia of the rat are insensitive to cholera and pertussis toxins. Hear Res 74:197–203.PubMedCrossRefGoogle Scholar
  162. Ogawa K, Schacht J (1995) Pty purinergic receptors coupled to phosphoinositide hydrolysis in tissues of the cochlear lateral wall. Neuroreport 6:1538–1540.PubMedCrossRefGoogle Scholar
  163. Ohisén KA, Baldwin DL, Nuttall AL, Miller JM (1991) Influence of topically applied adrenergic agents on cochlear blood flow. Circ Res 69:509–518.CrossRefGoogle Scholar
  164. Ohnishi S, Hara M, Inoue M, Yamashita T, Kumazawa T, Minato A, Inagaki C (1992) Delayed shortening and shrinkage of cochlear outer hair cells. Am J Physiol 263:C1088–1095.PubMedGoogle Scholar
  165. Ohyama K, Salt AN, Thalmann R (1988) Volume flow rate of perilymph in the guinea-pig cochlea. Hear Res 35:119–129.PubMedCrossRefGoogle Scholar
  166. Ono T, Schacht J (1987) Effect of cholinergic agents on phospholipid metabolism in the guinea pig cochlea. Audiol Jpn 30:607–608.CrossRefGoogle Scholar
  167. Ono T, Schacht J (1989) Acoustic stimulation increases phosphoinositide breakdown in the guinea pig cochlea. Neurochem Int 14:327–330.PubMedCrossRefGoogle Scholar
  168. Orsulakova A, Stockhorst E, Schacht J (1976) Effect of neomycin on phosphoinositide labeling and calcium binding in guinea pig inner ear tissues in vivo and in vitro. J Neurochem 26:285–290.PubMedCrossRefGoogle Scholar
  169. Petersen KU, Reuss L (1983) Cyclic AMP-induced chloride permeability in the apical membrane of Necturus gallbladder epithelium. J Gen Physiol 81:705–729.PubMedCrossRefGoogle Scholar
  170. Pierson MG, Gray BH (1982) Superoxide dismutase activity in the cochlea. Hear Res 6:141–152.Google Scholar
  171. Pitovski DZ, Drescher MJ, Drescher DG (1993) High affinity aldosterone binding sites (type I receptors) in the mammalian inner ear. Hear Res 69:10–14.PubMedCrossRefGoogle Scholar
  172. Pitovski DZ, Drescher MJ, Kerr Tp, Drescher DG (1993) Aldosterone mediates an increase in [3H]ouabain binding at Na+, K+ATPase sites in the mammalian inner ear. Brain Res 601:273–278.PubMedCrossRefGoogle Scholar
  173. Plinkert PK, Plinkert B, Zenner HP (1992) Carbohydrates in the cell surface of hair cells from the guinea pig cochlea. Eur Arch Otorhinolaryngol 249:67–73.PubMedCrossRefGoogle Scholar
  174. Pou AM, Fallon M, Winbery S, Bobbin RP (1991) Lowering extracellular calcium decreases the length of isolated outer hair cells. Hear Res 52:305–311.PubMedCrossRefGoogle Scholar
  175. Prazma J, Rodgers GK, Pillsbury HC (1983) Cochlear blood flow: effect of noise. Arch Otolaryngol 109:611–615.PubMedCrossRefGoogle Scholar
  176. Ptok M, Nair TS, Altschuler RA, Schacht J, Carey TE (1991) Monoclonal antibodies to inner ear antigens: II. Antigens expressed in sensory cell stereocilia. Hear Res 57:79–90.PubMedCrossRefGoogle Scholar
  177. Pujol R, Puel J-L, Gervais d’Aldin C, Eybalin M (1993) Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngol 113:330–334.PubMedCrossRefGoogle Scholar
  178. Quirk WS, Wright JW, Dengerink HA, Miller JM (1988) Angiotensin II-induced changes in cochlear blood flow and blood pressure in normotensive and spontaneously hypertensive rats. Hear Res 32:129–136.CrossRefGoogle Scholar
  179. Quirk WS, Avinash G, Nuttall AL, Miller JM (1992) The influence of loud sound on red blood cell velocity and blood vessel diameter in the cochlea. Hear Res 63:102–107.PubMedCrossRefGoogle Scholar
  180. Raphael Y, Volk T, Crossin KL, Edelman GM, Geiger B (1988) The modulation of cell adhesion molecule expression and intercellular junction formation in the developing avia inner ear. Dev Biol 128:222–235.PubMedCrossRefGoogle Scholar
  181. Rarey KE, Luttge WG (1989) Presence of type I and type II/IB receptors for adrenocorticosteroid hormones in the inner ear. Hear Res 41:217–222.PubMedCrossRefGoogle Scholar
  182. Rarey KE, Curtis LM, ten Cate WJ-F (1993) Tissue specific levels of glucocorticoid receptor within the rat inner ear. Hear Res 64:205–210.PubMedCrossRefGoogle Scholar
  183. Reivich M (1974) Blood flow metabolism couple in brain. Res Publ Assoc Res Nery Ment Disorders 53:125–140.Google Scholar
  184. Reuss L (1987) Cyclic AMP inhibits Cl- /HCO3 - exchange at the apical membrane of Necturus gallbladder epithelium. J Gen Physiol 90:173–196.PubMedCrossRefGoogle Scholar
  185. Richardson GP, Bartolami S, Russell IJ (1990) Identification of α 275kD protein associated with the apical surfaces of sensory hair cells in the avian inner ear. J Cell Biol 110:1055–1066.PubMedCrossRefGoogle Scholar
  186. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747.PubMedCrossRefGoogle Scholar
  187. Rossier BC, Geering K, Kraehenbuhl JP (1987) Regulation of the sodium pump: how and why? Trends Biol Sci 12:483–487.CrossRefGoogle Scholar
  188. Rossier MF, Putney JW (1991) The identity of the calcium-storing, inositol 1,4,5-trisphosphate-sensitive organelle in non-muscle cells: calciosome, endoplasmic reticulum... or both? Trends Neurosci 14:310–314.PubMedCrossRefGoogle Scholar
  189. Ryan AF, Schwartz IR (1984) Preferential glutamine uptake by cochlear hair cells: implications for the afferent transmitter. Brain Res 290:376–379.PubMedCrossRefGoogle Scholar
  190. Ryan AF, Woolf NK, Catanzaro A, Braverman S, Sharp FR (1985) Deoxyglucose uptake patterns in the auditory system: metabolic response to sound stimulation in the adult and neonate. In: Drescher D (ed) Auditory Biochemistry. Springfield, IL: Charles C. Thomas, pp. 401–421.Google Scholar
  191. Rybak LP, Whitworth C (1986) Comparative ototoxicity of foresemide and piretanide. Acta Otolaryngol (Stockh) 101:59–65.CrossRefGoogle Scholar
  192. Rybak LP, Green TP, Juhn SK, Morizono T (1984) Probenecid reduces cochlear effects and perilymph penetration of furosemide in chinchilla. J Pharmacol Exp Ther 230:706–709.PubMedGoogle Scholar
  193. Sakagami M, Fukazawa K, Matsunaga T, Fujita H, Mori N, Takumi T, Ohkubo H, Nakanishi S (1991) Cellular localization of rat Isk protein in the stria vascularis by immunohistochemical observation. Hear Res 56:168–172.PubMedCrossRefGoogle Scholar
  194. Salt AN, Konishi T (1979) Effects of noise on cochlear potentials and endolymph potassium concentration recorded with potassium-selective electrodes. Hear Res 1:343–363.PubMedCrossRefGoogle Scholar
  195. Salt AN, Ohyama K (1993) Accumulation of potassium in scala vestibuli perilymph of the mammalian cochlea. Ann Otol Rhinol Laryngol 102:64–70.PubMedGoogle Scholar
  196. Salt AN, Stopp PE (1979) The effect of raising the scala tympani potassium concentration on the tone-induced cochlear responses of the guinea pig. Exp Brain Res 36:87–98.PubMedCrossRefGoogle Scholar
  197. Salt AN, Thalmann R (1988a) Rate of longitudinal flow of cochlear endolymph. In: Nadol JB Jr (ed) Second International Symposium on Meniere’s Disease. Amsterdam: Kugler & Ghedini, pp. 69–73.Google Scholar
  198. Salt AN, Thalmann R (1988b) Cochlear fluid dynamics. In: Jahn AF, Santos-Sacchi J (eds) Physiology of the Ear. New York: Raven Press, pp. 341–357.Google Scholar
  199. Salt AN, Thalmann R, Marcus DC, Bohne BA (1986) Direct measurement of longitudinal endolymph flow rate in the guinea pig ochlea. Hear Res 23:141–151.PubMedCrossRefGoogle Scholar
  200. Salt AN, Melichar I, Thalmann R (1978) Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope 97:984–991.Google Scholar
  201. Salt AN, Inamura N, Thalmann R, Vora A (1989) Calcium gradients in inner ear endolymph. Am J Otolaryngol 10:371–375.PubMedCrossRefGoogle Scholar
  202. Salt AN, Ohyama K, Thalmann R (1991a) Radial communication between the perilymphatic scalae of the cochlea. I: Estimation by tracer perfusion. Hear Res 56:29–36.PubMedCrossRefGoogle Scholar
  203. Salt AN, Ohyama K, Thalmann R (1991b) Radial communication between the perilymphatic scalae of the cochlea. II: Estimation by bolus injection of tracer into the sealed cochlea. Hear Res 56:37–43.PubMedCrossRefGoogle Scholar
  204. Santi PA, Anderson CB (1987) A newly identified surface coat on cochlear hair cells. Hear Res 27:47–65.PubMedCrossRefGoogle Scholar
  205. Santi PA, Larson JT, Furcht LT, Economu TS (1989) Immunohistochemical localization of fibronectin in the chinchilla cochlea. Hear Res 39:91–102.PubMedCrossRefGoogle Scholar
  206. Santos-Sacchi J (1986) Dye coupling in the organ of Corti. Cell Tiss Res 245:525–529.Google Scholar
  207. Schacht J (1974) Interaction of neomycin with phosphoinositide metabolism in guinea pig inner ear and brain tissues. Ann Otol 83:613–618.Google Scholar
  208. Schacht J (1985) Hormonal regulation of adenylate cyclase in the stria vascularis of the mouse. Hear Res 20:9–13.PubMedCrossRefGoogle Scholar
  209. Schacht J, Canlon B (1985) Noise-ineduced changes of cochlear energy metabolism. In: Drescher D (ed) Auditory Biochemistry. Springfield, IL: Charles C. Thomas, pp. 389–400.Google Scholar
  210. Schacht J, Canlon B (1988) Biochemistry of the inner ear. In: Alberti PW, Ruben RJ (eds) Otologic Medicine and Surgery. New York: Churchill Livingstone, pp. 151–178.Google Scholar
  211. Schacht J, Zenner HP (1987) Evidence that phosphoinositides mediate motility in cochlear outer hair cells. Hear Res 31:155–159.PubMedCrossRefGoogle Scholar
  212. Scheibe F, Haupt H, Rothe E, Hache U (1981) Zur Glukose-, Pyruvat-und Laktatkonzentration von Perilymphe, Blut and Liquor cerebrospinalis unbelasteter and schallbelasteter Meerschweinchen in Athylurethannarkose. Arch Otorhinolaryngol 233:89–97.PubMedCrossRefGoogle Scholar
  213. Scheibe F, Haupt H, Ludwig C (1992) Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure. Hear Res. 63:19–25.PubMedCrossRefGoogle Scholar
  214. Schmidley JW, Dadson J, Iyer RS, Salomon RG (1992) Brain tissue injury and blood-brain barrier opening induced by injection of LGE2 or PGE2. Prostagl Leukot Essent Fatty Acids 47:105–110.CrossRefGoogle Scholar
  215. Schulte BA (1993) Immunohistochemical localization of intracellular Ca2+ATPase in outer hair cells, neurons and fibrocytes in the adult and developing inner ear. Hear Res 65:262–273.PubMedCrossRefGoogle Scholar
  216. Schulte BA, Adams JC (1989) Distribution of immunoreactive Na+, K+-ATPase in gerbil cochlea. J Histochem Cytochem 37:127–134.PubMedCrossRefGoogle Scholar
  217. Schulte BA, Steel KP (1994) Expression of α and ß subunit isoforms of Na+,K+ATPase in the mouse inner ear and changes with mutations at the Wv or Sld loci. Hear Res 78:65–76.PubMedCrossRefGoogle Scholar
  218. Schwartz IR, Ryan AF (1983) Differential labeling of sensory cell and neuronal populations in the guinea pig organ of Corti following amino acid incubations. Hear Res 9:185–200.PubMedCrossRefGoogle Scholar
  219. Sellick PM, Johnstone BM (1975) Production and role of inner ear fluid. Prog Neurobiol 5:337–362.PubMedCrossRefGoogle Scholar
  220. Shiga N, Wangemann P (1995) Ion selectivity of volume regulatory mechanisms presnt during a hyposmotic challenge in vestibular dark cells. Biochim Biophys Acta 1240:48–54.PubMedCrossRefGoogle Scholar
  221. Shigemoto T, Ohmori H (1990) Muscarinic agonists and ATP increase the intracellular Ca2+ concentration in chick cochlear hair cells. Hear Res 61:35–46.Google Scholar
  222. Shindo M, Miyamoto M, Abe N, Shida S, Murakami Y, Imai Y (1992) Dependence of endocochlear potential on basolateral Na+and Cl-concentration: a study using vascular and perilymph perfusion. Jpn J Physiol 42:617–630.PubMedCrossRefGoogle Scholar
  223. Sillman JS, Masta RI, LaRuere MJ, Nuttall AL, Miller JM (1989) Electrically stimulated increases in cochlear blood flow: II. Evidence for neural mediation. Otolaryngol Head Neck Surg 101:362–374.PubMedGoogle Scholar
  224. Skellett RA, Crist JR, Fallon M, Bobbin RP (1995) Caffeine-induced shortening of isolated outer hair cells: an osmotic mechanism of action. Hear Res 87:41–48.PubMedCrossRefGoogle Scholar
  225. Slepecky NB, Savage JE (1994) Expression of actin isoforms in the guinea pig organ of Corti: muscle isoforms are not detected. Hear Res 73:16–26.PubMedCrossRefGoogle Scholar
  226. Slepecky NB, Ulfendahl M (1993) Evidence for calcium-binding proteins and calcium-dependent regulatory proteins in sensory cells of the organ of Corti. Hear Res 70:73–84.PubMedCrossRefGoogle Scholar
  227. Sokoloff L (1977) Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29:13–26.PubMedCrossRefGoogle Scholar
  228. Sokrab TE, Johansson BB, Tengvar C, Kalimo H, Olsson Y (1988) Adrenaline-induced hypertension: morphological consequences of the blood-brain barrier disturbance. Acta Neurol Scand 77:387–396.PubMedCrossRefGoogle Scholar
  229. Somlyo AP (1984) Cellular site of calcium regulation. Nature 309:516–517.PubMedCrossRefGoogle Scholar
  230. Spicer SS, Schulte BA, Adams JC (1990) Immunolocalization of Na+, K +-ATPase and carbonic anhydrase in the gerbil’s vestibular system. Hear Res 43:205–217.PubMedCrossRefGoogle Scholar
  231. Spoendlin H, Lichtensteiger W (1966) The adrenergic innervation of the labyrinth. Acta Otolaryngol 61:423–434.PubMedCrossRefGoogle Scholar
  232. Sterkers O, Saumon G, Tran Ba Huy P, Amiel C (1982) K+, Cl-, and H2O entry in endolymph, perilymph, and cerebrospinal fluid of the rat. Am J Physiol 243:F173–F180.PubMedGoogle Scholar
  233. Sterkers O, Ferrary E, Amiel C (1984) Inter-and intracompartmental osmotic gradients within the rat cochlea. Am J Physiol 247:F602–F606.PubMedGoogle Scholar
  234. Sterkers O, Saumon G, Tran Ba Huy P, Ferrary E, Amiel C (1984) Electrochemical heterogeneity of the cochlear endolymph: effect of acetazolamide. Am J Physiol 246:F47–F53.PubMedGoogle Scholar
  235. Sterkers O, Ferrary E, Saumon G, Amiel C (1987) Na and nonelectrolyte entry into inner ear fluids of the rat. Am J Physiol 253:F50–F58.PubMedGoogle Scholar
  236. Sunose H, Ikeda K, Saito Y, Nishiyama A, Takasaka T (1992) Membrane potential measurements in isolated outer hair cells of the guinea pig cochlea using conventional microelectrodes. Hear Res 62:237–244.PubMedCrossRefGoogle Scholar
  237. Sunose H, Ikeda K, Saito Y, Nishiyama A, Takasaka T (1993) Nonselective cation and Cl channels in luminal membrane of the marginal cell. Am J Physiol Cell Physiol 265:C72–C78.Google Scholar
  238. Sunose H, Ikeda K, Suzuki M, Takasaka T (1994) Voltage-dependent small K channel in luminal membrane of marginal cells of stria vascularis dissected from guinea pig cochlea. Assoc Res Otolaryngol 17:133.Google Scholar
  239. Sunose H, Liu J, Marcus DC (1995) Elevated intracellular cAMP activates transepithelial potassium secretion and apical slowly activating potassium channel in striai marginal cells and in vestibular dark cells. Proc Sendai Symp 5 (in press).Google Scholar
  240. Sziklai I, Kiss JG, Ribari O (1986) Inhibition of myosin light-chain kinase activity in the organ of Corti by 0.3–5 kilodalton substances of the otosclerotic perilymph. Arch Otorhinolaryngol 243:229–232.PubMedCrossRefGoogle Scholar
  241. Sziklai I, Ferrary E, Horner KC, Sterkers O, Amiel C (1992) Time-related alteration of endolymph composition in an experimental model of endolymphatic hydrops. Laryngoscope 102:431–438.PubMedCrossRefGoogle Scholar
  242. Tachibana M, Wilcox E, Yokotani N, Schneider M, Fex J (1992) Selective amplification and partial sequencing of cDNAs encoding G protein a subunits from cochlear tissues. Hear Res 62:82–88.PubMedCrossRefGoogle Scholar
  243. Takahashi T, Kimura RS (1970) The ultrastructure of the spiral ligament in the rhesus monkey. Acta Otolaryngol 69:46–60.PubMedCrossRefGoogle Scholar
  244. Takeuchi S, Marcus DC, Wangemann P (1992) Ca2+-activated nonselective cation, maxi K+ and Cl-channels in apical membrane of marginal cells of stria vascularis. Hear Res 61:86–96.PubMedCrossRefGoogle Scholar
  245. Takeuchi S, Ando M, Kozakura K, Saito H, Irimajiri A (1995) Ion channels in basolateral membrane of marginal cells dissociated from gerbil stria vascularis. Hear Res 83:89–100.PubMedCrossRefGoogle Scholar
  246. Tanaka M, Salt AN (1994) Cochlear function is disturbed by micromolar increases of endolymph calcium. Assoc Res Otolaryngol 17:90.Google Scholar
  247. Tasaki I, Spyropoulos CS (1959) Stria vascularis as source of endocochlear potential. J Neurophysiol 22:149–155.PubMedGoogle Scholar
  248. ten Cate WJ, Rarey KE (1991) Plasma membrane modulation of ampullar dark cells by corticosteroids. Arch Otolaryngol Head Neck Surg 117:96–99.PubMedCrossRefGoogle Scholar
  249. ten Cate WJ, Curtis LM, Rarey KE (1992) Immunochemical detection of glucocor-ticoid receptors within rat cochlear and vestibular tissues. Hear Res 60:199–204.PubMedCrossRefGoogle Scholar
  250. Thalmann I, Thalmann R (1978) Reevaluation of adenylate cyclase in Reissner’s membrane. Arch Otorhinolaryngol 221:311–312.PubMedCrossRefGoogle Scholar
  251. Thalmann I, Rosenthal Hl, Moore BW, Thalmann R (1980) Organ of Corti-specific polypeptides: OCP-I and OCP-II. Arch Otolaryngol 226:123–128.Google Scholar
  252. Thalmann I, Comegys TH, Liu SZ, Ito Z, Thalmann R (1992) Protein profiles of perilymph and endolymph of the guinea pig. Hear Res 63:37–42.PubMedCrossRefGoogle Scholar
  253. Thalmann I, Suzuki H, McCourt DW, Comegys TH, Thalmann R (1993) Partial amino acid sequences of organ of Corti proteins OCP1 and OCP2: a progress report. Hear Res 64:191–298.PubMedCrossRefGoogle Scholar
  254. Thalmann R (1971) Metabolic features of auditory and vestibular systems. Laryngo scope 81:1245–1260.CrossRefGoogle Scholar
  255. Thalmann R, Kusakari J, Miyoshi T (1973) Dysfunctions of energy releasing and consuming processes of the cochlea. Laryngoscope 83:1690–1712.PubMedCrossRefGoogle Scholar
  256. Thalmann RR (1976) Quantitative biochemical techniques for studying normal and noise-damaged ears. In: Henderson D, Hamernik RP, Dosanjh DS, Miller JH (eds) Effects of Noise on Hearing. New York: Raven Press, pp. 129–154.Google Scholar
  257. Thalmann R, Marcus NY, Thalmann I (1978) Adenylate energy charge, energy status, and phosphorylation state of stria vascularis under metabolic stress. Laryngoscope 88:1985–1998.PubMedCrossRefGoogle Scholar
  258. Thalmann R, Paloheimo S, Thalmann I (1979) Distribution of cyclic nucleotides in the organ of Corti. Acta Otolaryngol 87:375–380.PubMedCrossRefGoogle Scholar
  259. Thalmann R, Salt AN, DeMott J (1988) Endolymph volume regulation. Possible mechanisms. In: Nadol JB Jr (ed) Second Symposium on Meniere’s Disease. Amsterdam: Kugler & Ghedini, pp. 55–60.Google Scholar
  260. Thompson AM, Neely JG (1992) Induction of heat shock protein in interdental cells by hyperthermia. Otolaryngol Head Neck Surg 107:769–774.PubMedGoogle Scholar
  261. Thorne PR, Nuttall AL (1987) Laser Doppler measurements of cochlear blood flow during loud sound exposure in the guinea pig. Hear Res 27:1–10.PubMedCrossRefGoogle Scholar
  262. Thorne PR, Nuttall AL (1989) Alterations in oxygenation of cochlear endolymph during loud sound exposure. Acta Otolaryngol 107:71–79.PubMedCrossRefGoogle Scholar
  263. Vogh BP, Maren TH (1975) Sodium, chloride, and bicarbonate movement from plasma to cerebrospinal fluid in cats. Am J Physiol 228:673–683.PubMedGoogle Scholar
  264. Volpe P, Krause KH, Hashimoto S, Zorzato F, Pozzan T, Meldolesi J, Lew DP (1988) “Calciosome,” a cytoplasmic organelle: the inositol 1,4,5-triphosphatesensitive calcium store of nonmuscle cells? Proc Natl Acad Sci USA 85:1091–1095.PubMedCrossRefGoogle Scholar
  265. von Békésy G (1950) DC potentials and energy balance of the cochlear partition. J Acoust Soc Am 22:576–582.Google Scholar
  266. Wada J, Kambayashi J, Marus DC, Thalmann R (1979) Vascular perfusion of the cochlea: effect of potassium-free and rubidium-substituted media. Arch Otorhinolaryngol 225:79–81.PubMedCrossRefGoogle Scholar
  267. Wang S, Schacht T (1990) Insulin stimulates protein synthesis and phospholipid signaling systems but does not regulate glucose uptake in the inner ear. Hear Res 47:53–62.PubMedCrossRefGoogle Scholar
  268. Wangemann P, Greger R (1990) Piretanide inhibits the Na+2Cl-K+ carrier in the thick ascending limb of the loop of Henle and reduces the metabolic fuel requirements of this nephron segment. In: Puschett JB, Greenberg A (eds) Diuretics III: Chemistry, Pharmacology, and Clinical Applications. New York: Elsevier, pp. 220–224.Google Scholar
  269. Wangemann P, Marcus DC (1989) Membrane potential measurements of transitional cells from the crista ampullaris of the gerbil. Effects of barium, quinidine, quinine, tetraethylammonium, cesium, ammonium, thallium and ouabain. Pflügers Arch 414:656–662.PubMedCrossRefGoogle Scholar
  270. Wangemann P, Marcus DC (1990) K+-induced swelling of vestibular dark cells is dependent on Na+ and Cl-and inhibited by piretanide. Pflügers Arch 416:262–269.PubMedCrossRefGoogle Scholar
  271. Wangemann P, Shiga N (1994a) Cell volume control in vestibular dark cells during and after a hyposmotic challenge. Am J Physiol Cell Physiol 226:C1046–C1060.Google Scholar
  272. Wangemann P, Shiga N (1994b) Ba2+ and amiloride uncover or induce a pH-sensitive and a Na or non-selective cation conductance in transitional cells of the inner ear. Pflügers Arch 426:258–266.PubMedCrossRefGoogle Scholar
  273. Wangemann P, Shiga N, Marcus DC (1993) The Na+/K+ exchanger in transitional cells of the inner ear. Hear Res 69:107–114.PubMedCrossRefGoogle Scholar
  274. Wangemann P, Liu J, Marcus DC (1995) Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hear Res 84:19–29.PubMedCrossRefGoogle Scholar
  275. Wangemann P, Liu J, Shiga N (1995) The pH-sensitivity of transepithelial K transport in vestibular dark cells. J Membr Biol 147 255–262.PubMedGoogle Scholar
  276. Wangemann P (1995) Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hear Res 90:149–157.PubMedCrossRefGoogle Scholar
  277. Wangemann P, Liu J, Shen Z, Shipley A, Marcus DC (1995) Hypo-osmotic challenge stimulates transepithelial K+ secretion and activates apical Isk channel in vestibular dark cells. J Membr Biol 147:263–273.PubMedGoogle Scholar
  278. Whitlon DC (1993) E-cadherin in the mature and develping organ of Corti of the mouse. J Neurocytol 22:1030–1038.PubMedCrossRefGoogle Scholar
  279. Williams SE, Zenner HP, Schacht J (1987) Three molecular steps of aminoglycoside ototoxicity demonstrated in outer hair cells. Hear Res 30:11–18.PubMedCrossRefGoogle Scholar
  280. Yamashita T, Amano H, Harada N, Su ZL, Kumazawa T, Tsunoda Y, Tashiro Y (1990) Calcium distribution and mobilization in single cochlear hair cells. Acta Otolaryngol 109:256–262.PubMedCrossRefGoogle Scholar
  281. Ylikoski J, Pirvola U, Moshnyakov M, Palgi J, Arumae U, Saarma M (1993) Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear Res 65:69–78.PubMedCrossRefGoogle Scholar
  282. Yoshihara T, Igarashi M, Usami S, Kanda T (1987) Cytochemical studies of Ca2+-ATPase activity in the vestibular epithelia of the guinea pig. Arch Otorhinolaryngol 243:417–423.PubMedCrossRefGoogle Scholar
  283. Zajic G, Anniko M, Schacht J (1983) Cellular localization of adenylate cyclase in the developing and mature inner ear of the mouse. Hear Res 10:249–261.PubMedCrossRefGoogle Scholar
  284. Zajic G, Nair TS, Ptok M, Van Waes C, Altschuler RA, Schacht J, Carey TE (1991) Monoclonal antibodies to inner ear antigens: I Antigens expressed by supporting cells of the guinea pig cochlea. Hear Res 52:59–71.PubMedCrossRefGoogle Scholar
  285. Zenner HP, Zimmerman U, Schmitt U (1985) Reversible contraction of isolated mammalian cochlear hair cells. Hear Res 22:83–90.CrossRefGoogle Scholar
  286. Zidanic M, Brownell WE (1990) Fine structure of the intracochlear potential field. I. The silent current. Biophys J 57:1253–1268.PubMedCrossRefGoogle Scholar
  287. Zwislocki JJ, Slepecky NB, Cefaratti LK, Smith RL (1992) Ionic coupling among cells in the organ of Corti. Hear Res 57:175–194.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Philine Wangemann
  • Jochen Schacht

There are no affiliations available

Personalised recommendations