Skip to main content

What is a genetic map function?

  • Conference paper
Genetic Mapping and DNA Sequencing

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 81))

Abstract

We review the reasons that genetic map functions are studied and the way they are used. The connexions between chiasma point processes on four-stranded bivalents, crossover point processes on the single strand products of meiosis, multilocus recombination probabilities and map functions are discussed in detail, mainly, but not exclusively under the assumption of no chromatid interference. As a result of this discussion we obtain a number of inequalities constraining map functions which lead to both bound and smoothness constraints. We show that most of the functions proposed as map functions in the literature do in fact arise in association with a stationary renewal chiasma process, and we clarify the relation between their doing so, while failing to be multilocus feasible in the sense of Liberman & Karlin (1984). We emphasize the fact that map functions can in general neither define chiasma nor crossover processes nor multilocus recombination probabilities, nor can they fully reflect the nature of the interference present in a chiasma or crossover process. Our attempt to answer the question in the title of this paper is not wholly successful, but we present some simple necessary conditions which become sufficient when supplemented by two further simple conditions. The paper closes with the statement of several open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, N.T.J. (1961) Introduction to the Mathematical Theory of Genetic Linkage. London: Oxford University Press.

    MATH  Google Scholar 

  2. Barratt, R.W., D. Newmeyer, D.D. Perkins, and L. Garnjobst (1954) Map construction in Neurospora crassa. Advan.Genet. 6: 1–93.

    Google Scholar 

  3. Bellman, R.E. (1970) Introduction to Matrix Analysis. 2nd ed. New York: McGraw-Hill.

    MATH  Google Scholar 

  4. Bole-Gowda, B.N., D.D. Perkins, and W.N. Strickland (1962) Crossing-over and interference in the centromere region of linkage group I of Neurospora. Genetics 47: 1243–1252.

    Google Scholar 

  5. Carter, T.C. and D.S. Falconer (1951) Stocks for detecting linkage in the mouse and the theory of their design. J. Genet. 50: 307–323.

    Article  Google Scholar 

  6. Carter, T.C. and A. Robertson (1952) A mathematical treatment of genetical recombination using a four-strand model. Proc. Roy. Soc., B 139: 410–426.

    Article  Google Scholar 

  7. Cobbs G. 1978 Renewal process approach to the theory of genetic linkage case of chromatid interference. Genetics 89 563–581

    Google Scholar 

  8. Crow, J.F. (1990) Mapping functions. Genetics 125: 669–671.

    Google Scholar 

  9. Daley, D.J. and D. Vere-Jones (1988) An Introduction to the Theory of Point Processes. New York: Springer-Verlag.

    MATH  Google Scholar 

  10. Evans, S.N., M.S. McPeek, and T.P. Speed (1992) A characterization of crossover models that possess map functions. Theor. Popul. Biol. 43: 80–90

    Article  MathSciNet  Google Scholar 

  11. Felsenstein, J. (1979) A mathematically tractable family of genetic mapping functions with different amounts of interference. Genetics 91: 769–775.

    MathSciNet  Google Scholar 

  12. Fisher, R.A., M.F. Lyon, and A.R.G. Owen (1947) The sex chromosome in the house mouse. Heredity 1: 335–365.

    Google Scholar 

  13. Fisher R.A. 1951 A cobinatorial formulation of multiple linkage tests. Nature London 167 520

    Google Scholar 

  14. Foss E., R. Lande, F.W. Stahl, and C.M. Steinberg (1993) Chiasma interference as a function of genetic distance. Genetics 133: 681–691.

    Google Scholar 

  15. Geiringer, H. (1944) On the probability theory of linkage in Mendelian heredity. Ann. Math. Statist. 15: 25–57.

    Article  MathSciNet  MATH  Google Scholar 

  16. Goldgar, D.E. and P.R. Fain (1988) Models of multilocus recombination non-randomness in chiasma number and crossover positions. Am. J. Hum. Genet. 43: 38–45.

    Google Scholar 

  17. Goldgar, D.E., P.R. Fain, and W.J. Kimberling (1989) Chiasma-basedmodels of multilocus recombination: increased power for exclusion mapping and gene ordering. Genomics 5: 283–290.

    Article  Google Scholar 

  18. Haldane, J.B.S. (1919) The combination of linkage values, and the calculation of distances between the loci of linked factors. J. Genetics 8: 299–309.

    Article  Google Scholar 

  19. Kallenberg, O. (1983) Random Measures. 3rd ed. Berlin: Akademie-Verlag and Academic Press.

    MATH  Google Scholar 

  20. Karlin, S.(1984) Theoretical aspects of genetic map functions in recombination processes. Human Population Genetics: The Pittsburgh Symposium (A. Chakravarti ed.) pp. 209–228. New York: Van Nostrand Reinhold Company.

    Google Scholar 

  21. Karlin, S. and U. Liberman (1978) Classification and comparisons of multilocus recombination distributions. Proc. Natl. Acad. Sci. USA 75: 6332–6336.

    Article  MATH  Google Scholar 

  22. Karlin, S. and U. Liberman (1979) A natural class of multilocus recombination processes and related measure of crossover interference. Adv. Appl. Prob. 11: 479–501.

    Article  MathSciNet  MATH  Google Scholar 

  23. Karlin, S. and U. Liberman (1983) Measuring interference in the chiasma renewal formation process. Adv. Appl. Prob. 15: 471–487.

    Article  MATH  Google Scholar 

  24. Karlin, S. and U. Liberman (1994) Theoretical recombination processes incorporating interference effects. Theor. Popul. Biol. 46: 198–231.

    Article  MATH  Google Scholar 

  25. Kosambi, D.D. (1944) The estimation of the map distance from recombination values. Ann. Eugen. 12: 172–175.

    Google Scholar 

  26. Lande, R. and F. W. Stahl (1993) Chiasma interference and the distribution of exchanges in Drosophila melanogaster. Cold Spring Harbor Symp. Quant. Biol. 58: 543–552.

    Article  Google Scholar 

  27. Lange, K. and N. Risch (1977) Comments on lack of interference in the four strand model of crossing over. J. Math. Biol. 5: 55–59.

    Article  MathSciNet  Google Scholar 

  28. Liberman, U. and S. Karlin (1984) Theoretical models of genetic map functions. Theor. Popul Biol. 25: 331–346.

    Article  MathSciNet  MATH  Google Scholar 

  29. Ludwig, W. (1934) Uber numerische beziehungen der crossover-werte untereinander. Z. Indukt. Abstamm. Vereb. 67: 58–95.

    Google Scholar 

  30. Mahter, K. (1935) Reduction and equational separation of the chromosomes in bivalents and multivalents. J. Genet. 30: 53–78.

    Article  Google Scholar 

  31. Mahter, K. (1936) The determination of position in crossing over. J. Genet. 33: 207–235.

    Article  Google Scholar 

  32. Mahter, K. (1937) The determination of position in crossing over. II. The chromosome length-chiasma frequency relation. Cytologia, Jub. Vol., 514–526.

    Google Scholar 

  33. McPeek, M.S. (1995) An introduction to recombination and linkage analysis. This volume.

    Google Scholar 

  34. McPeek, M.S. and T.P. Speed (1995) Modelling interference in genetic recombination. Genetics 139: 1031–1044.

    Google Scholar 

  35. Morton, N.E. and C.J. MacLean (1984) Multilocus recombination frequencies. Genet. Res. 44: 99–108.

    Article  Google Scholar 

  36. Morton, N.E., C.J. MacLean, R. Lew, and S. Yee (1986) Multipoint linkage analysis. Am. J. Hum. Genet. 387: 868–883.

    Google Scholar 

  37. Muller, H.J. (1916) The mechanism of crossing over. Am. Nat. 50: 193–221; 284-305; 350-366; 421-434.

    Article  Google Scholar 

  38. Ott, J. (1991) Analysis of Human Genetic Linkage Data. Baltimore, MD: The Johns Hopkins University Press.

    Google Scholar 

  39. Owen, A.R.G. (1949) The theory of genetic recombination I. Long-chromosome arms. Proc. Roy. Soc, B 136: 67–94.

    Article  Google Scholar 

  40. Owen, A.R.G. (1950) The theory of genetical recombination. Adv. Genet. 3: 117–157.

    Article  Google Scholar 

  41. [41]Owen, A.R.G. (1951) An extension of Kosambi’s formula. Nature 168: 208–209.

    Article  Google Scholar 

  42. [42]Owen, A.R.G. (1953) The analysis of multiple linkage data. Heredity 7: 247–264.

    Article  Google Scholar 

  43. Pascoe, L. and N. Morton (1987) The use of map functions in multipoint mapping. Am. J. Hum. Genet. 40: 174–183.

    Google Scholar 

  44. Payne, L.C. (1956) The theory of genetical recombination: a general formulation for a certain class of intercept length distributions appropriate to the discussion of multiple linkage. Proc. Roy. Soc, B 144: 528–544.

    Article  Google Scholar 

  45. Perkins, D.D. (1962) Crossing-over and interference in a multiply marked chromosome arm of Neurospora. Genetics 47: 1253–1274.

    Google Scholar 

  46. Rao, D.C., N.E. Morton, J. Lindsten, M. Hulten, and S. Yee (1977) A mapping function for man. Hum. Hered. 27: 99–104.

    Article  Google Scholar 

  47. Risch, N. and K. Lange (1979) An alternative model of recombination and interference. Ann. Hum. Genet. 43: 61–70.

    Article  MATH  Google Scholar 

  48. Risch, N. and K. Lange (1983) Statistical analysis of multilocus recombination. Biometrics 39: 949–963.

    Article  MathSciNet  MATH  Google Scholar 

  49. Schnell, F.W. (1961) Some general formulations of linkage effects in inbreeding. Genetics 46: 947–957.

    Google Scholar 

  50. Snow, R. (1979) Maximum likelihood estimation of linkage and interference from tetrad data. Genetics 92: 231–245.

    MathSciNet  Google Scholar 

  51. Speed, T.P., M.S. McPeek, and S.N. Evans (1992) Robustness of the nointerference model for ordering genetic markers. Proc. Natl. Acad. Sci. USA 89: 3103–3106.

    Article  MATH  Google Scholar 

  52. Stam, P. (1979) Interference in genetic crossing over and chromosome mapping. Genetics 92: 573–594.

    MathSciNet  Google Scholar 

  53. Sturt, E. (1976) A mapping function for human chromosomes. Ann. Hum. Genet. 40: 147–163.

    Article  Google Scholar 

  54. Sturt, E. and C.A.B. Smith (1976) The relationship between chromatid interference and the mapping function. Cytogen. Cel. Genet. 17: 212–220.

    Article  Google Scholar 

  55. Sturtevant, A.H. (1915) The behaviour of chromosomes as studied through linkage. Z. Indukt. Abstamm.Vereb. 13: 234–287.

    Google Scholar 

  56. Weeks, D.E. (1994) Invalidity of the Rao map function for three loci. Hum. Hered. 44: 178–180.

    Article  Google Scholar 

  57. Weeks, D.E., G.M. Lathrop, and J. Ott (1993) Multipoint mapping under genetic interference. Hum. Hered. 43: 86–97.

    Article  Google Scholar 

  58. Weeks, D.E., J. Ott, and G.M. Lathrop (1994) Detection of genetic interference: simulation studies and mouse data. Genetics 136: 1217–1226.

    Google Scholar 

  59. Weinstein, A. (1936) The theory of multiple-strand crossing over. Genetics 21: 155–199.

    Google Scholar 

  60. Weinstein, A. (1938) Mathematical study of multiple-strand crossing over and coincidence in the chromosomes of Drosophila. Amer. Phil. Soc. Yearbook 1937. 227–228.

    Google Scholar 

  61. Zhao, H. (1995) Statistical analysis of genetical interference. PhD thesis, University of California at Berkeley.

    Google Scholar 

  62. Zhao, H. and T.P. Speed (1996) On genetic map functions. Genetics 142: 1369–1377.

    Google Scholar 

  63. Zhao H., M. S. McPeek, and T.P. Speed (1995a) A statistical analysis of chromatid interference. Genetics 139: 1057–1065.

    Google Scholar 

  64. Zhao H., M.S. McPeek, and T.P. Speed (1995b) A statistical analysis of crossover interference using the chi-square model. Genetics 139: 1045–1046.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this paper

Cite this paper

Speed, T.P. (1996). What is a genetic map function?. In: Speed, T., Waterman, M.S. (eds) Genetic Mapping and DNA Sequencing. The IMA Volumes in Mathematics and its Applications, vol 81. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0751-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0751-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6890-1

  • Online ISBN: 978-1-4612-0751-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics