Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 118))

  • 1557 Accesses

Abstract

Let us consider again the Cauchy problem for a general system of conservation laws

$$ \left\{ {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial t}} + \frac{\partial }{{\partial x}}f\left( u \right) = 0,\quad x \in \mathbb{R},t > 0,} \\ {u\left( {x,0} \right) = {u_0}\left( x \right),} \end{array}} \right. $$
((1.1))

, where u = (u 1,..., u p )T is a p-vector. As usual, we assume that this system is hyperbolic, i.e., the Jacobian matrix A(u) = f′(u) of f(u) has p real eigenvalues ranked in increasing order,

, and a complete set of eigenvectors. Moreover, we shall assume that for all 1 ≤ kp, the kth characteristic field is either genuinely nonlinear or linearly degenerate. For the notations concerning the difference schemes, we refer to Chapter III of G.R..

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  • Lerat, A. Difference methods for hyperbolic problems with emphasis on space-centered approximations, Computational Fluid Dynamics, von Karman Institute for Fluid Dynamics, Lecture Series 1981–03.

    Google Scholar 

  • Peyret, R. and T.D. Taylor. Computational Methods for Fluid Flow, Springer Series in Computational Physics, Springer-Verlag, New York (1983).

    Google Scholar 

  • Hirsch, C. Numerical computation of internal and external flows, vol 2: Computational methods for inviscid and viscous flows, John Wiley Sons, Chichester, 1990, reprinted 1995.

    Google Scholar 

  • Kunhardt E.E. and C. Wu. Towards a more accurate Flux Corrected Transport algorithm, J. Comp. Phys. 68 (1987), 127–150.

    Article  MATH  Google Scholar 

  • Lallemand, M.H. Dissipative properties of Runge—Kutta schemes with upwind spatial approximation for the Euler equations, INRIA Research Report 1173 (1990), INRIA Rocquencourt, 78153 Le Chesnay, France.

    Google Scholar 

  • Lallemand, M.H., F. Fezoui, and E. Perez. Un schéma multigrille en éléments finis décentré pour les équations d’Euler, INRIA Research Report 602 (1987), INRIA Rocquencourt, 78153 Le Chesnay, France.

    Google Scholar 

  • Larrouturou, B. Recent progress in reactive flow computations, in Computing methods in applied sciences and engineering (Proceedings of the ninth conference on computing methods in applied sciences and engineering, INRIA, Paris 1990), R. Glowinski and A. Lichnewsky (Eds.), SIAM, Philadelphia (1990), 249–272.

    Google Scholar 

  • Larrouturou, B. How to preserve the mass fractions positivitiy when computing compressible multicomponent flows, J. Comp. Phys. 92 (1991), 273–295.

    Article  MathSciNet  Google Scholar 

  • Larrouturou, B. On upwind approximations of multi-dimensional multi-species flows, in Proceedings of the first European CFD Conference, Ch. Hirsh, J. Pénaux and E. Onate (Eds.), Elsevier, Amsterdam (1992), 117–126.

    Google Scholar 

  • Larrouturou, B. Modélisation physique, numérique et mathématique des phénomènes de propagation de flammes, in Recent Advances in Combustion Modelling, Series on Advances in Mathematics for Applied Sciences, vol. 6, World Scientific, Singapore (1991).

    Google Scholar 

  • Larrouturou, B. and L. Fezoui. On the equations of multi-component perfect or real gas inviscid flow, in Nonlinear Hyperbolic Problems, (Proceedings of the Second International Conference on Nonlinear Hyperbolic Problems, Aachen 1988), Carasso et al. (Eds.), Lecture Notes in Mathematics 1402, Springer-Verlag, Berlin (1989).

    Google Scholar 

  • Lax, P.D. Shock waves and entropy, in Contributions to nonlinear functional analysis, E.A. Zarantonello (Ed.), Academic Press, New York (1971), 603–634.

    Google Scholar 

  • Lax, P.D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Conf. Board. Math. Sci. Regional Conference Series in Applied Mathematics 11, SIAM, Philadelphia, 1972.

    Google Scholar 

  • Lax, P. and B. Wendroff. Systems of conservation laws, Comm. Pure Appl. Math. 13 (1960), 217–237.

    Article  MathSciNet  MATH  Google Scholar 

  • Lax, P. and B. Wendroff. Difference schemes for hyperbolic equations with high order of accuracy, Comm. Pure Appl. Math. 17 (1964), 381–398.

    Article  MathSciNet  MATH  Google Scholar 

  • Le Floch, Ph. Entropy weak solutions to nonlinear hyperbolic systems in nonconservation form, in Nonlinear Hyperbolic Equations - Theory, Computation Methods, and Applications (Proceedings of the Second International Conference on Nonlinear Hyperbolic Problems, Aachen 1988), J. Ballmann and R. Jeltsch (Eds.), Notes on Numerical Fluid Mechanics 24, Vieweg, Braunschweig (1989), 362–373, and Comm. Part. Diff. Equations 13 (6) (1988), 669–127.

    Google Scholar 

  • Le Floch, An existence and uniqueness result for two nonstrictly hyperbolic systems, in Nonlinear Evolution Equations that Change Type, IMA Volumes in Mathematics and its Applications 27, B.L. Keyfitz and M. Shearer (Eds.), Springer-Verlag, New York (1991), 126–138.

    Google Scholar 

  • Le Floch, Ph. and Li Ta-tsien. Un développement asymptotique défini globalement en temps pour la solution du problème de Riemann généralisé, C. R. Acad. Sci. Paris 309, Série I (1989), 807–810.

    Google Scholar 

  • Le Floch, Ph. and J.G. Liu. Discrete entropy and monotonicity criteria for hyperbolic conservation laws, C. R. Acad. Sci. Paris 319, Série I (1994), 881–886.

    Google Scholar 

  • Le Floch, Ph. and T.P. Liu. Existence theory for nonlinear hyperbolic systems in nonconservative form, CMA, École Polytechnnique internal report 254 (1992), 91128 Palaiseau, France, to appear in Forum Mathematicum.

    Google Scholar 

  • Le Floch, Ph. and P.-A. Raviart. An asymptotic expansion for the solution of the generalized Riemann problem. Part 1: general theory, Ann. Inst. H. Poincaré, Nonlinear analysis 5 (2) (1988), 179–207.

    MATH  Google Scholar 

  • Mehlman, G. Étude de quelques problèmes liés aux écoulements en déséquilibre chimique, Doctoral dissertation, Thesis École Polytechnique (1991), Palaiseau, France.

    Google Scholar 

  • Isaacson, E. and B. Temple. Convergence of a 2 x 2 Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math. 55 (1995), 625–640.

    Article  MathSciNet  MATH  Google Scholar 

  • Tadmor, E. The numerical viscosity of entropy stable schemes for systems of conservation laws, II, ICASE Report, ICASE NASA Langley Research Center, Hampton, VA.

    Google Scholar 

  • Tadmor, E. and T. Tassa. On the piecewise smoothness of entropy solutions to scalar conservation laws, Comm. Part. Diff. Equations 18 (910) (1993), 1631–1652.

    Article  MathSciNet  MATH  Google Scholar 

  • Tamura, Y. and K. Fujii. A multi-dimensional upwind scheme for the Euler equations on structured grid, Computers Fluids, 22 (1993), 125–138.

    Article  MATH  Google Scholar 

  • Tan, D. and T. Zhang. Riemann problem for self-similar ZND-Model in gas dynamical combustion, J. Diff. Equations 95 (1992), 331–369.

    Article  MathSciNet  MATH  Google Scholar 

  • Tan, D. and T. Zhang. Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws, I. Four-J cases, J. Diff. Equations 111 (1994), 203–254.

    Google Scholar 

  • Tan, D., T. Zhang, and Y. Zheng. Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Diff. Equations 112 (1994), 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka, T. Finite volume TVD scheme on an unstructured grid system for three-dimensional M.H.D. simulation of inhomogeneous sytems including strong background potential fields, J. Comp. Phys. 111 (1994), 381–389.

    Article  MATH  Google Scholar 

  • Tang, T. and Z.H. Teng. Error bounds for fractional step methods for conservation laws with source terms, SIAM J. Numer. Anal. 32 (1995), 110–127.

    Article  MathSciNet  MATH  Google Scholar 

  • Taniuti, T. and K. Nishihara. Nonlinear waves, Pitman Monographs and Studies in Mathematics 15, Pitman, London (1983).

    Google Scholar 

  • Tartar, L. Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV R.J. Knops (Ed.), Research Notes in Mathematics 39, Pitman London (1979), 136–192.

    Google Scholar 

  • Tartar, L. The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Equations, J.M. Ball (Ed.), NATO ASI Series, Reidel, Dordrecht (1983), 263–285.

    Chapter  Google Scholar 

  • Tartar, L. Une introduction à la théorie mathématique des systèmes hyperboliques de lois de conservation, Report 682 (1989), Istituto di Analisi del CNR, 27100 Pavia, Italy.

    Google Scholar 

  • Taylor, M. Partial Differential Equations, Applied Mathematical Sciences 117, Springer-Verlag, New York (1996).

    Google Scholar 

  • Tadmor, E. A minimum entropy principle in the gas dynamics equations, ICASE Report 86–33, (1986), or in Advances in numerical and applied mathematics, J.C. South and M.Y. Hussaini (Eds.), ICASE Report 86–18, (1986), 100–118, ICASE NASA Langley Research Center, Hampton, VA.

    Google Scholar 

  • Tadmor, E. Entropy functions for symmetric systems of conservation laws, J. Math. Anal. Appl. 122 (1987), 355–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Tadmor, E. The numerical viscosity of entropy stable schemes for systems of conservation laws, I, Math. Comp. 49 (1987), 91–103.

    Article  MathSciNet  MATH  Google Scholar 

  • Tadmor, E. The numerical viscosity of entropy stable schemes for systems of conservation laws, II, ICASE Report, ICASE NASA Langley Research Center, Hampton, VA.

    Google Scholar 

  • Tadmor, E. and T. Tassa. On the piecewise smoothness of entropy solutions to scalar conservation laws, Comm. Part. Diff. Equations 18 (910) (1993), 1631–1652.

    Article  MathSciNet  MATH  Google Scholar 

  • Tamura, Y. and K. Fujii. A multi-dimensional upwind scheme for the Euler equations on structured grid, Computers Fluids, 22 (1993), 125–138.

    Article  MATH  Google Scholar 

  • Tan, D. and T. Zhang. Riemann problem for self-similar ZND-Model in gas dynamical combustion, J. Diff. Equations 95 (1992), 331–369.

    Article  MathSciNet  MATH  Google Scholar 

  • Tan, D. and T. Zhang. Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws, I. Four-J cases, J. Diff. Equations 111 (1994), 203–254.

    Google Scholar 

  • Tan, D., T. Zhang, and Y. Zheng. Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Diff. Equations 112 (1994), 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka, T. Finite volume TVD scheme on an unstructured grid system for three-dimensional M.H.D. simulation of inhomogeneous sytems including strong background potential fields, J. Comp. Phys. 111 (1994), 381–389.

    Article  MATH  Google Scholar 

  • Colella, P. and H. Glaz. Efficient solution algorithms for the Riemann problem for real gases, J. Comp. Phys. 59 (1985), 264–289.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, M.S. A comparison of first and second order rezoned and Lagrangian Godunov solutions, J. Comp. Phys. 90 (1990), 458–485.

    Article  MATH  Google Scholar 

  • Goodman, J.B. and R.J. LeVeque. On the accuracy of stable schemes for 2D scalar conservation laws, Math. Comp. 45 (1988), 503–520.

    MathSciNet  Google Scholar 

  • Toro, E.F. A weighted average flux method for hyperbolic conservation laws, Proc. R. Soc. London A 423 (1989), 401–418.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Godlewski, E., Raviart, PA. (1996). Finite difference schemes for one-dimensional systems. In: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol 118. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0713-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0713-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6878-9

  • Online ISBN: 978-1-4612-0713-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics