Impact of Submerged Macrophytes on Fish-Zooplankton Interactions in Lakes

  • Erik Jeppesen
  • Torben L. Lauridsen
  • Timo Kairesalo
  • Martin R. Perrow
Part of the Ecological Studies book series (ECOLSTUD, volume 131)


Fish have a major structuring impact on the Zooplankton communities in lakes (Hrbacek et al., 1961; Brooks and Dodson, 1965) that may cascade to the lower trophic levels and chemical environment (Carpenter et al., 1985; Carpenter and Kitchell, 1993). Ample evidence is available from enclosure experiments (e.g., Christoffersen et al., 1993), whole-lake experiments (e.g., Shapiro et al., 1975; Benndorf, 1987; Gulati et al., 1990; Carpenter and Kitchell, 1993), and empirical analyses (Jeppesen et al., 1990, 1997). More recently, it has become evident that 0+ fish may play a key role in Zooplankton population dynamics (Cryer et al., 1986; Mills et al., 1987), and some studies suggest that fish larvae are responsible for the midsummer decline in Zooplankton (Luecke et al., 1990; Jeppesen et al., 1997), a phenomenon that is often attributed to increased density of inedible phytoplankton such as cyanobacteria (e.g., De Bernardi and Guisanni, 1990). Whole-lake (Søndergaard et al., 1997) and enclosure (He and Wright, 1992) experiments support the structuring role of 0+ fish. How the importance of top-down control of Zooplankton by fish varies along a trophic gradient is debated extensively. McQueen et al. (1986) suggested that the cascading effect of zooplank-tivorous fish is stronger in oligotrophic lakes than in eutrophic lakes, but a growing body of literature argues that the cascading effect of fish is greater in eutrophic and hypertrophic lakes with respect to the food web in the classic sense


White Dwarf Surface Brightness Central Star Planetary Nebula Circumstellar Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, N.J. Temporal scale, phytoplankton ecology and palaeoecology. Freshwat. Biol. 34: 367–378; 1995.CrossRefGoogle Scholar
  2. Anderson, O. Optimal foraging by largemouth bass in structured environments. Ecology 65: 851–861; 1984.CrossRefGoogle Scholar
  3. Bean, C.W.; Winfield, I.J. Habitat use and activity patterns of roach (Rutilus rutilus), rudd (Scardinius erythrophtalmus (L.)), perch (Percafluviatilis) and pike (Esox lucius) in the laboratory: the role of predation threat and structural complexity. Ecol. Freshwat Fish 4: 37–46; 1995.CrossRefGoogle Scholar
  4. Beklioglu, M.; Moss, B. Mesocosm experiments on the interaction of sediment influence, fish predation and aquatic plants with the structure of phytoplankton and Zooplankton communities. Freshwat. Biol. 36: 315–325; 1996.CrossRefGoogle Scholar
  5. Benndorf, J. Food web manipulation without nutrient control: a useful strategy in lake restoration? Schweiz. Z. Hydrol. 49: 237–248; 1987.CrossRefGoogle Scholar
  6. Blois-Heulin, C.; Crowley, P.H.; Arlington, M.; Johnson, D.M. Direct and indirect effects of predators on the dominant invertebrates of two freshwater littoral communities. Oecologia 84: 295–306; 1990.Google Scholar
  7. Boikova, O.S. Horizontal distribution of crustaceans in Lake Glubokoe. Hydrobiologia 141: 113–123; 1986.CrossRefGoogle Scholar
  8. Brooks, J.L.; Dodson, S.I. Predation, body size and composition of plankton. Science 150: 28–35; 1965.PubMedCrossRefGoogle Scholar
  9. Carpenter, S.R.; Kitchell, J.F., eds. The trophic cascade in lakes. Cambridge: Cambridge University Press; 1993.Google Scholar
  10. Carpenter, S.R.; Lodge, D.M. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 26: 341–370; 1986.CrossRefGoogle Scholar
  11. Carpenter, S.R.; Kitchell, J.F.; Hodgson, J.R. Cascading trophic interactions and lake productivity. BioScience 35: 635–639; 1985.CrossRefGoogle Scholar
  12. Chambers, P.A.; Kalff, J. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Can. J. Fish. Aquat. Sci. 47: 1929–1936; 1985.Google Scholar
  13. Chick, J.H.; Mclvor, C.C. Patterns in the abundance and composition of fishes among beds of different macrophytes: viewing a littoral zone as a landscape. Can. J. Fish. Aquat. Sci. 51: 2873–2882; 1994.CrossRefGoogle Scholar
  14. Christoffersen, K.; Riemann, B.; Klysner, A.; Sondergaard, M. Potential role of Zooplankton in structuring a plant community in eutrophic lake water. Limnol. Oceanogr. 38: 561–573; 1993.CrossRefGoogle Scholar
  15. Crowder, L.B.; Cooper, W.E. Habitat structural complexity and the interaction between bluegill and their prey. Ecology 63: 1802–1813; 1982.CrossRefGoogle Scholar
  16. Cryer, M.; Townsend, C.R. Spatial distribution of Zooplankton in a shallow eutrophic lake, with a discussion of its relation to fish predation. J. Plankton Res. 10: 487–501; 1988.CrossRefGoogle Scholar
  17. Cryer, M.; Pierson, G.; Townsend, C.R. Reciprocal interactions between roach Rutilus rutilus, and Zooplankton in a small lake: prey dynamics and fish growth and recruitment. Limnol. Oceanogr. 31: 1022–1038; 1986.CrossRefGoogle Scholar
  18. Cyr, H.; Downing, J.A. Empirical relationships of phytomacrofaunal abundance to plant biomass and macrophyte bed characteristics. Can. J. Fish. Aquat. Sci. 45: 976–984; 1988.CrossRefGoogle Scholar
  19. Davies, J. Evidence for a diurnal horizontal migration in Daphnia hyalina lacustris Sars. Hydrobiologia 120: 103–105; 1985.CrossRefGoogle Scholar
  20. De Bernardi, R.; Guisanni, G. Are blue-green algae suitable food for Zooplankton? An overview. Hydrobiologia 200/201: 29–41; 1990.CrossRefGoogle Scholar
  21. De Meester, L.; Maas, S.; Dierckens, K.; Dumont, H.J. Habitat selection of patchiness in Scapholeberis: horizontal distribution and migration of S. mucronata in a small pond. J. Plankton Res. 15: 1129–1139; 1993.CrossRefGoogle Scholar
  22. DeMott, W.R. The role of taste in food selection by freshwater Zooplankton. Oecologia 69: 224–240; 1986.Google Scholar
  23. De Stasio, B.T., Jr. Diel vertical and horizontal migration by Zooplankton: population budgets and the diurnal deficit. Bull. Mar. Sci. 53: 44–64; 1993.Google Scholar
  24. Diehl, S. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53: 207–214; 1988.CrossRefGoogle Scholar
  25. Dorgelo, J.; Heykoop, M. Avoidance of macrophytes by Daphnia longispina. Verh. Int. Verein. Limnol. 22: 3369–3372; 1985.Google Scholar
  26. Downing, J.A.; Plante, C.; Lalonde, S. Fish production correlated with primary productivity and the morphoedaphic index. Can. J. Fish. Aquat. Sci. 47: 1929–1936; 1990.CrossRefGoogle Scholar
  27. Dusoge, K. The occurrence and role of the predatory larvae of Procladius Skuse (Chiro-nomidae, Diptera) in the benthos of Lake Sniardy. Ekol. Pol. 28: 155–186; 1980.Google Scholar
  28. Engels, S. The role and interactions of submersed macrophytes in a shallow Wisconsin lake. J. Freshwat. Ecol. 4: 329–340; 1988.CrossRefGoogle Scholar
  29. Evans, M.S.; Bethany, E.H.; Sell, D.W. Seasonal features of Zooplankton assemblages in the nearshore area of southeastern Lake Michigan. J. Great Lakes Res. 6: 275–289; 1980.CrossRefGoogle Scholar
  30. Geller, W.; Pinto-Coelho, R.; Pauli, H.-R. The vertical distribution of Zooplankton (Crustacea, Rotatoria, Ciliata) and their grazing over the diurnal and seasonal cycles in Lake Constance. Arch. Hydrobiol. Beih. Ergebn. Limnol. 35: 79–85; 1992.Google Scholar
  31. Gliwicz, Z.M.; Jachner, A. Diel migration of juvenile fish: a ghost of predation past or present. Arch. Hydrobiol. 124: 385–410; 1992.Google Scholar
  32. Gliwicz, Z.M.; Rybak, J.I. Zooplankton. In: Pieczynska, E., ed. Selected problems of lake littoral ecology. Warsaw: University of Warsaw; 1976: 69–96.Google Scholar
  33. Grimm, M.P.; Backx, J.J.G.M. The restoration of shallow eutrophic lakes, and the role of northern pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200/201: 557–566; 1990.CrossRefGoogle Scholar
  34. Gulati, R.D.; Lammens, E.H.R.R.; Meijer, M.-L.; van Donk, E. Biomanipulation tool for water management. Hydrobiologia 200/201: 1–628; 1990.CrossRefGoogle Scholar
  35. Hanson, J.R.; Leggett, W.C. Empirical prediction of fish biomass and weight. Can. J. Fish. Aquat. Sci. 39: 257–263; 1982.CrossRefGoogle Scholar
  36. Hasler, A.D.; Jones, E. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30: 359–364; 1949.CrossRefGoogle Scholar
  37. He, X.; Wright, R. An experimental study of piscivore-planktivore interactions: population and community responses to predation. Can. J. Fish. Aquat. Sci. 49:1176–1185; 1992.CrossRefGoogle Scholar
  38. Hrbacek, J.; Dvorakova, M.; Korinek, M.; Prochazkova, L. Demonstration of the effect of the fish stock on the species composition of Zooplankton and the intensity of metabolism of the whole plankton association. Verh. Int. Verein. Limnol. 14: 192–195; 1961.Google Scholar
  39. Hutchinson, G.E. A treatise on limnology II. New York: J. Wiley & Sons; 1967.Google Scholar
  40. Irvine, K.; Moss, B.; Balls, H. The loss of submerged plants with eutrophication II. Relationships between fish and Zooplankton in a set of experimental ponds, and conclusions. Freshwat. Biol. 22: 89–107; 1989.CrossRefGoogle Scholar
  41. Jacobsen, L.; Perrow, M.R.; Landkildehus, F.; Hjorne, M.; Lauridsen, T.L.; Berg, S. Interactions between piscivores, zooplanktivores and Zooplankton in submerged macrophytes: preliminary observations from enclosure and pond experiments. Hydrobiologia 342/343: 197–205; 1997.CrossRefGoogle Scholar
  42. Jakobsen, P.J.; Johnsen, G.H. The influence of predation on horizontal distribution of Zooplankton species. Freshwat. Biol. 17: 501–507; 1987.CrossRefGoogle Scholar
  43. Jeppesen, E.; Jensen, J.P.; Kristensen, P.; Søndergaard, M.; Mortensen, E.; Sortkjaer, O.; Olrik, K. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes. 2: Threshold levels, long-term stability and conclusions. Hydrobiologia 200/201: 219–227; 1990.CrossRefGoogle Scholar
  44. Jeppesen, E.; Kristensen, P.; Jensen, J.P.; Søndergaard, M.; Mortensen, E.; Lauridsen, T.L. Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish lakes: duration, regulating factors and methods for overcoming resilience. Mem. 1st. Ital. Idrobiol. 48: 127–148; 1991.Google Scholar
  45. Jeppesen, E.; Sortkjaer, O.; Sondergaard, M.; Erlandsen, M. Impact of a trophic cascade on heterotrophic bacterioplankton production and biomass in two shallow fish-manipulated lakes. Arch. Hydrobiol. Ergebn. Limnol. 37: 219–231; 1992.Google Scholar
  46. Jeppesen, E.; Sondergaard, M.; Kanstrup, E.; Petersen, B.; Henriksen, R.B.; Hammershøj, M.; Mortensen, E.; Jensen, J.P.; Have, A. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275/276: 15–30; 1994.CrossRefGoogle Scholar
  47. Jeppesen, E.; Agerbo Madsen, E.; Jensen, J.P.; Anderson, N.J. Reconstructing the past density of planktivorous fish and trophic structure from sedimentary Zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshwat. Biol. 36: 115–127; 1996.CrossRefGoogle Scholar
  48. Jeppesen, E.; Jensen, J.P.; Søndergaard, M.; Lauridsen, T.; Pedersen, L.J.; Jensen, L. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164; 1997.CrossRefGoogle Scholar
  49. Johnson, D.M.; Pierce, C.L.; Martin, T.H.; Watson, C.N.; Bohanan, R.E.; Crowley, P.H. Prey depletion by odonate larvae: combining evidence from multiple field experiments. Ecology 68: 1459–1465; 1987.CrossRefGoogle Scholar
  50. Jürgens, K. Impact of Daphnia on planktonic microbial food webs—a review. Microb. Food Webs 8: 295–324; 1994.Google Scholar
  51. Kairesalo, T. Diurnal fluctuations within a littoral plankton community in oligotrophic Lake Pääjärvi, southern Finland. Freshwat. Biol. 10: 533–537; 1980.CrossRefGoogle Scholar
  52. Kairesalo, T.; Penttilä, S. Effect of light and water flow on the spatial distribution of littoral Bosmina longispina Leydig (Cladocera). Verh. Int. Verein. Limnol. 24: 682–687; 1990.Google Scholar
  53. Kairesalo, T.; Tátrai, I.; Luokkanen, E. Impacts of waterweed (Elodea canadensis Michx) on plankton-fish interactions in lake littoral. Verh. Int. Verein. Limnol. (in press).Google Scholar
  54. Kajak, Z.; Dusoge, K.; Stanczykowska, A. Influence of mutual relations of organisms, especially Chironomidae, in natural benthic communities, on their abundance. Ann. Zool. Fenn. 5: 49–56; 1968.Google Scholar
  55. Kleiven, O.T.; Larssen, P.; Hobæk, A. Direct distributional response in Daphnia pulex to a predator kairomone. J. Plankton Res. 18: 1341–1348; 19CrossRefGoogle Scholar
  56. Kvam, O.V.; Kleiven, O.T. Diel horizontal migration and swarm formation in Daphnia in response to Chaoborus. Hydrobiologia 307: 177–184; 1995.CrossRefGoogle Scholar
  57. Lampert, W. Ultimate causes of diel vertical migration of Zooplankton: new evidence for the predator-avoidance hypothesis. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 79–88; 1993.Google Scholar
  58. Lauridsen, T.L.; Buenk, I. Diel changes in the horizontal distribution of Zooplankton in the littoral zone of two shallow eutrophic lakes. Arch. Hydrobiol. 137: 161–176; 1996.Google Scholar
  59. Lauridsen, T.L.; Lodge, D. Avoidance by Daphnia magna fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnol. Oceanogr. 41: 794–798; 1996.CrossRefGoogle Scholar
  60. Lauridsen, T.L.; Pedersen, L.J.; Jeppesen, E.; Søndergaard, M. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 18: 2283–2294; 1996.CrossRefGoogle Scholar
  61. Leah, R.T.; Moss, B.; Forrest, D.E. Experiments with large snails in a fertile, shallow, brackish lake. Hickling Broad, United Kingdom. Int. Rev. Ges. Hydrobiol. 63: 291–310; 1978.CrossRefGoogle Scholar
  62. Lehtovaara, A.; Sarvala, J. Seasonal dynamics of total biomass and species composition of Zooplankton in the littoral of an oligotrophic lake. Verh. Int. Verein. Limnol. 22: 805–810; 1984.Google Scholar
  63. Leibold, M.A. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. Am. Nat. 134: 922–949; 1990.CrossRefGoogle Scholar
  64. Luecke, C.; Vanni, M.J.; Magnuson, J.J.; Kitchell, J.F.; Jacobson, P.J. Seasonal regulation of Daphnia populations by planktivorous fish: implications for the clearwater phase. Limnol. Oceanogr. 35: 1718-1733, 1990.Google Scholar
  65. McQueen, D.J.; Post, J.R.; Mills, E.L. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. Aquat. Sci. 43: 1571–1581; 1986.CrossRefGoogle Scholar
  66. Meyers, D.G. Diurnal vertical migration in aquatic microcrustaceans: light and oxygen responses of littoral Zooplankton. In: Kerfoot, W.C., ed. Evolution and ecology of Zooplankton communities. Hanover, NH: University Press of New England; 1980: 80–90.Google Scholar
  67. Mills, E.L.; Forney, J.L.; Wagner, K.J. Fish predation and its cascading effect on the Oneida Lake food chain. In: Kerfoot, W.C.; Sih, A., eds. Predation: direct and indirect effects on aquatic communities. Hanover, NH: University Press of New England; 1987: 118–131.Google Scholar
  68. Moss, B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydro-biologia 200/201: 367–378; 1990.CrossRefGoogle Scholar
  69. Moss, B.; McGowan, S.; Carvalho, L. Determination of phytoplankton crops by top-down and bottom-up mechanisms in a group of English lakes, the West Midland Meres. Limnol. Oceanogr. 39: 1020–1029; 1994.CrossRefGoogle Scholar
  70. Moss, B.; Beklioglu, M.; Carvalho, L.; Kilinc, S.; McGowan, S.; Stephen, D. Vertically challenged limnology: contrasts between deep and shallow lakes. Hydrobiologia 342/343:257–267; 1997.CrossRefGoogle Scholar
  71. Ogilvie, S.H.; Mitchell, S.F. A model of mussel filtration in a shallow New Zealand lake, with reference to eutrophication control. Arch. Hydrobiol. 133: 471–482; 1995.Google Scholar
  72. Paterson, M. The distribution of microcrustacea in the littoral zone of a freshwater lake. Hydrobiologia 263: 173–183; 1993.CrossRefGoogle Scholar
  73. Paterson, M. Invertebrate predation and seasonal dynamics of microcrustaceans in the littoral zone of a fishless lake. Arch. Hydrobiol. 99:1–36; 1994.Google Scholar
  74. Pennak, R.W. Structure of Zooplankton populations in the littoral macrophyte zone of some Colorado lakes. Trans. Am. Microsc. Soc. 85: 329–349; 1966.CrossRefGoogle Scholar
  75. Pennak, R.W. Some evidence for aquatic macrophytes as repellents for a limnetic species of Daphnia. Int. Rev. Ges. Hydrobiol. 58: 569–576; 1973.CrossRefGoogle Scholar
  76. Persson, L. Predator-mediated competition in prey refuges: the importance of habitat dependent prey resources. Oikos 68: 12–22; 1993.CrossRefGoogle Scholar
  77. Persson, L.; Eklöv, P. Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76: 763–784; 1995.CrossRefGoogle Scholar
  78. Persson, L.; Anderson, G.; Hamrin, S.F.; Johansson, L. Predation regulation and primary production along the productivity gradient of temperature lake ecosystems. In: Carpenter, S.R., ed. Complex interactions in lake communities. New York: Springer-Verlag; 1988:45–65.Google Scholar
  79. Persson, L.; Diehl, S.; Johanson, L.; Andersson, G.; Hamrin, S.F. Shifts in fish communities along the productivity gradient of temperate lake-patterns and the importance of size-structured populations. J. Fish Biol. 38: 281–293; 1991.CrossRefGoogle Scholar
  80. Phillips, G.L.; Perrow, M.R.; Stansfield, J. Manipulating the fish-zooplankton interaction in shallow lakes: a tool for restoration. In: Greenstreet, S.P.R.; Tasker, M.L., eds. Aquatic predators and their prey. Oxford: Blackwell Scientific Publications; 1996: 174–183.Google Scholar
  81. Ringelberg, J. Enhancement of the phototactic reaction in Daphnia hyalina by a chemical mediated by juvenile perch (Percafluviatilis). J. Plankton Res. 13: 17–25; 1991.CrossRefGoogle Scholar
  82. Sarnelle, O. Nutrient enrichment and grazer effects of phytoplankton in lakes. Ecology 73: 551–560; 1992.CrossRefGoogle Scholar
  83. Savino, J.; Stein, R.A. Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation. Trans. Am. Fish. Soc. 111: 255–266; 1982.CrossRefGoogle Scholar
  84. Schriver, P.; Bøgestrand, J.; Jeppesen, E.; S0ndergaard, M. Impact of submerged macrophytes on the interactions between fish, Zooplankton and phytoplankton: large-scale enclosure experiments in a shallow lake. Freshwat. Biol. 33: 255–270; 1995.CrossRefGoogle Scholar
  85. Shapiro, J.; Lamarra, V.; Lynch, M. Biomanipulation: an ecosystem approach to lake restoration. In: Brezonik, P.L.; Fox, J.F., eds. Water quality management through biological control. Gainesville, FL: University of Florida; 1975:85–96.Google Scholar
  86. Siebeck, O. Spatial orientation of planktonic crustaceans. 1. The swimming behaviour on a horizontal plane. Verh. Int. Verein. Limnol. 17: 831–840; 1969.Google Scholar
  87. Siebeck, O. Optical orientation of pelagic crustaceans and its consequence in the pelagic and the littoral zones. In: Kerfoot, W.C., ed. Evolution and ecology of Zooplankton communities. Hanover, NH: University Press of New England; 1980: 28–38.Google Scholar
  88. Søndergaard, M.; Jeppesen, E.; Berg, S. Pike (Esox lucius L.) stocking as a biomanipulation tool. 2. Effects on lower trophic levels in lake Lyng (Denmark). Hydrobiologia 342/343: 319–325; 19CrossRefGoogle Scholar
  89. Stansfield, J.H.; Perrow, M.R.; Tench, L.D.; Jowitt, A.J.D.; Taylor, A.A.L. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342/343: 229–240; 1997.CrossRefGoogle Scholar
  90. Straskraba, M.; Pieczynska, E. Field experiments on shading effect by emergents on littoral phytoplankton and periphyton production. Rozpravy Ceskoslovenské Akademie. Iada Matematickych a PíVéd. 80: 7–30; 1970.Google Scholar
  91. Szlauer, L. Diurnal migrations of minute invertebrates inhabiting the zone of submerged hydrophytes in a lake. Schweiz. A. Hydrol. 25: 56–64; 1963.Google Scholar
  92. Timms, R.M.; Moss, B. Prevention of growth of potentially dense phytoplankton populations by Zooplankton grazing in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–486; 1984.CrossRefGoogle Scholar
  93. Timson, S.; Laybourn-Parry, J. The behavioural responses and tolerance of freshwater benthic cyclopoid copepods to hypoxia and anoxia. Hydrobiologia 127: 257–263; 1985.CrossRefGoogle Scholar
  94. Venugopal, M.N.; Winfield, I.J. The distribution of juvenile fishes in a hypereutrophic pond: can macrophytes potentially offer a refuge for Zooplankton? J. Freshwat. Ecol. 8: 389–396; 1993.CrossRefGoogle Scholar
  95. von Elert, E.; Loose, C.J. Predator-induced diel vertical migration in Daphnia: enrichment and preliminary chemical characterization of a kairomone exuded by fish. J. Chem. Ecol. 22: 885–895; 1996.CrossRefGoogle Scholar
  96. Vuille, T. Abundance, standing crop and production of microcrustacean populations (Cladocera, Copepoda) in the littoral zone of Lake Biel, Switzerland. Arch. Hydrobiol. 123: 165–185; 1991.Google Scholar
  97. Vuille, T.; Maurer, V. Body mass of crustacean Zooplankton in Lake Biel: a comparison between pelagic and littoral communities. Verh. Int. Verein. Limnol. 24: 938–942; 1991.Google Scholar
  98. Walls, M.; Rajasilta, M.; Sarvala, J.; Salo, J. Diel changes in horizontal microdistribution of littoral cladocera. Limnologica 20: 253–258; 1990.Google Scholar
  99. Werner, E.E.; Gilliam, J.F.; Hall, D.J.; Mittelbach, G.G. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64: 1540–1548; 1983.CrossRefGoogle Scholar
  100. Wetzel, R.G. Limnology. Philadelphia: W.B. Saunders; 1975.Google Scholar
  101. Whiteside, M.C. Chydorid (Cladocera) ecology: seasonal patterns and abundance of populations in Elk Lake, Minnesota. Ecology 55: 538–550; 1974.CrossRefGoogle Scholar
  102. Whiteside, M.C. O+ fish as major factors affecting abundance patterns of littoral zoo-plankton. Verh. Int. Verein. Limnol. 23: 1710–1714; 1988.Google Scholar
  103. Winfield, I. J. The influence of simulated aquatic macrophytes on the Zooplankton consumption rate of juvenile roach, Rutilus rutilus, rudd, Scardinius erythrophthalmus, and perch, Percafluviatilis. J. Fish Biol. 29: 37–48; 1986.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Erik Jeppesen
  • Torben L. Lauridsen
  • Timo Kairesalo
  • Martin R. Perrow

There are no affiliations available

Personalised recommendations