Skip to main content

Structuring Role of Macrophytes in Lakes: Changing Influence Along Lake Size and Depth Gradients

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 131))

Abstract

Emergent, floating-leaved, and submergent macrophytes grow in the littoral region of most lakes. These aquatic macrophytes are influenced by geomorphology, environmental conditions, and biotic interactions (Sculthorpe, 1967; Hutchinson, 1975), while exerting their own influence on the lake environment and biota (Carpenter and Lodge, 1986; Engel, 1988). The capacity of macrophytes to provide a substrate for colonization of algae and invertebrates (Sozska, 1975; Cat-taneo and Kalff, 1980; Dvorak and Best, 1982; Cattaneo, 1983; Morin, 1986; Schram et al., 1987; Miller et al., 1989), to affect water and sediment chemistry as well as other limnological conditions (Carpenter and Gasith, 1978; Prentki et al., 1979; Jaynes and Carpenter, 1986), and to influence biogeochemical cycles and productivity (Wetzel and Hough, 1973; Godshalk and Wetzel, 1978; Wetzel, 1979; Carpenter, 1980; Cattaneo and Kalff, 1980; Carpenter, 1983; Wetzel, 1990) and biotic interactions (Crowder and Cooper, 1982; Heck and Crowder, 1991; Schriver et al., 1995; see also this volume) is well recognized. The understanding of the role of macrophytes in lacustrine systems is based mostly on process studies, small-scale investigations (ponds, test plots), observations in small lakes, and modeling (Carpenter and Lodge, 1986). It is intuitively obvious that the influence of macrophytes in most small or shallow aquatic systems is proportional to their abundance (density, biomass, or extent of cover) and productivity. Little is known about the role of macrophytes in situations in which they are less conspicuous, as in large

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barko, J.W.; Smart, R.M. Effects of organic matter additions to sediments on the growth of aquatic plants. J. Ecol. 71: 161–175; 1983.

    Article  CAS  Google Scholar 

  • Beauchamp, D.A.; Allen, B.B.; Richards R.C.; Wurtsbauch, W.A.; Goldman, C.R. Lake trout spawning in deepwater macrophyte beds. North Am. J. Fish. Manage. 12: 442–449; 1992.

    Article  Google Scholar 

  • Beauchamp, D.A.; Byron, E.R.; Wurtsbauch, W.A. Summer habitat use by littoral-zone fishes in Lake Tahoe and effects of shoreline structures. North Am. J. Fish. Manage. 14: 385–394; 1994.

    Article  Google Scholar 

  • Canfield, D.E., Jr.; Bachmann, R.W. Predictions of total phosphorus concentrations, chloro-phyll-a and Secchi depth in natural and artificial lakes. Can. J. Fish. Aquat. Sci. 38:414–423; 1981.

    Article  Google Scholar 

  • Canfield, D.E., Jr.; Hoyer, M.V. Aquatic macrophytes and their relation to the limnology of Florida lakes. Final Report. Bureau of Aquatic Plants Management, Florida Department of Natural Resources, Tallahassee, FL; 1992.

    Google Scholar 

  • Canfield, D.E., Jr.; Jones, R.J. Assessing the trophic status of lakes with aquatic macrophytes. Lake and reservoir management. EPA 440/5-84-001. Proceedings of the 3rd Annual Conference, Knoxville, TN, 1984.

    Google Scholar 

  • Canfield, D.E., Jr.; Langeland, K.A.; Linda, S.B.; Haller, W.T. Relations between water transparency and maximum depth of macrophyte colonization in lakes. J. Aquat. Plant Manage. 23: 25–28; 1985.

    Google Scholar 

  • Carpenter, S.R. Enrichment of Lake Wingra, Wisconsin, by submerged macrophyte decay. Ecology 61: 1145–1155; 1980.

    Article  Google Scholar 

  • Carpenter, S.R. Submersed vegetation: an internal factor in lake ecosystem succession. Am. Nat. 118: 372–389; 1981.

    Article  Google Scholar 

  • Carpenter, S.R. Submersed macrophyte community structure and internal loading: relationship to lake ecosystem productivity and succession. In: Taggart, J., ed. Lake restoration, protection and management. Washington, DC:U.S.E.P.A.; 1983: 105–111.

    Google Scholar 

  • Carpenter, S.R.; Gasith, A. Mechanical cutting of submersed macrophytes: immediate effects on littoral water chemistry and metabolism. Wat. Res. 12: 55–57; 1978.

    Article  CAS  Google Scholar 

  • Carpenter, S.R.; Greenlee, J.K. Lake deoxygenation after herbicide use: a simulation model analysis. Aquat. Bot. 11: 173–186; 1981.

    Article  CAS  Google Scholar 

  • Carpenter, S.R.; Lodge, D.M. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 26: 341–370; 1986.

    Article  Google Scholar 

  • Casterlin, M.E.; Reynolds, W.W. Habitat selection by juvenile bluegill sunfish, Lepomis macrochirus. Hydrobiologia 59: 75–79; 1978.

    Article  Google Scholar 

  • Cattaneo, L.B. Grazing on epiphytes. Limnol Oceanogr. 28: 124–132; 1983.

    Article  Google Scholar 

  • Cattaneo, L.B.; Kalff, J. The relative contribution of aquatic macrophytes and their epiphytes to the production of macrophyte beds. Limnol. Oceanogr. 25: 280–289; 1980.

    Article  Google Scholar 

  • Chambers, P.A. Nearshore occurrence of submerged aquatic macrophytes in relation to wave action. Can. J. Fish. Aquat. Sci. 44: 1666–1669; 1987.

    Article  Google Scholar 

  • Chambers, P.A.; Kalff, J. Depth distribution and biomass of submerged macrophyte communities in relation to Secchi depth. Can. J. Fish. Aquat. Sci. 42: 701–709; 1985.

    Article  Google Scholar 

  • Chick, J.H.; Mclvor, C.C. Patterns in the abundance and composition of fishes among beds of different macrophytes; viewing a littoral as a landscape. Can. J. Fish. Aquat. Sci. 51: 2873–2882; 1994.

    Article  Google Scholar 

  • Conrow, R.; Zale, A.V.; Gregory, R.W. Distribution and abundance of early life stages of fishes in a Florida lake dominated by macrophytes. Trans. Am. Fish. Soc. 119: 521–528; 1990.

    Article  Google Scholar 

  • Coops, H.; Boeters, R.; Smit, H. Direct and indirect effects of wave attack on helophytes. Aquat. Bot. 41: 333–352; 1991.

    Article  Google Scholar 

  • Crowder, L.B.; Cooper, W.E. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813; 1982.

    Article  Google Scholar 

  • Danehy, R.J. Comparative ecology of fishes associated with natural cobble shoals and sand substrates in Mexico Bay, Lake Ontario. M.S. thesis, S.U.N.Y. College of Environmental Science and Forestry, Syracuse, NY; 1984.

    Google Scholar 

  • Danehy, R.J.; Ringler, N.H.; Gannon, J.E. Influence of nearshore structure on growth and diets of yellow perch (Percaflavesens) and white perch (Morone americana) in Mexico Bay, Lake Ontario. J. Great Lake Res. 17: 183–193; 1991.

    Article  Google Scholar 

  • Davidson-Arnott, R.G.D.; Pollard, W.H. Wave climate and potential longshore sediment transport, Nottawasaga Bay, Ontario. J. Great Lake Res. 6: 54–67;1980.

    Article  Google Scholar 

  • Davies, J. Evidence for diurnal horizontal migration in Daphnia hyalina lacustris Sars. Hydrobiologia 120: 103–105; 1985.

    Article  Google Scholar 

  • Diehl, S. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53: 207–214; 1988.

    Article  Google Scholar 

  • Dionne, M.; Folt, C.L. An experimental analysis of macrophyte growth forms as fish foraging habitat. Can. J. Fish. Aquat. Sci. 48: 123–131; 1991.

    Article  Google Scholar 

  • Duarte, C.M.; Kalff, J. Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities. Limnol. Oceanogr. 3: 1072–1080; 1986.

    Article  Google Scholar 

  • Duarte, C.M.; Kalff, J. Latitudinal influence on the depth of maximum colonization and maximum biomass of submerged angiosperms in lakes. Can. J. Fish. Aquat. Sci. 44: 1759–1764; 1987.

    Article  Google Scholar 

  • Duarte, C.M.; Kalff, J.; Peters, R.H. Patterns in biomass and cover of aquatic macrophytes in lakes. Can. J. Fish. Aquat. Sci. 43: 1900–1908; 1986.

    Article  Google Scholar 

  • Dvorak, J.; Best, E.P.H. Macro-invertebrates communities associated with macrophytes of Lake Vechten: structural and functional relationships. Hydrobiologia 95: 115–126; 1982.

    Article  Google Scholar 

  • Eadie, J.; Keast, A. Resource heterogeneity and fish species diversity in lakes. Can. J. Zool. 62: 1689–1695; 1984.

    Article  Google Scholar 

  • Emery, A.R. The basis of fish community structure: marine and freshwater comparison. Environ. Biol. Fish. 3: 33–37; 1978.

    Article  Google Scholar 

  • Engel, S. Role and interactions of submerged macrophytes in a shallow Wisconsin lake. J. Freshwat. Ecol. 4: 329–341; 1988.

    Article  Google Scholar 

  • Fairchild, G.W. Population responses of plant-associated invertebrates to foraging by lar-gemouth bass fry (Micrpterus salmonides). Hydrobiologia 96: 169–176; 1982.

    Article  Google Scholar 

  • Gasith, A. Can littoral resources influence ecosystem processes in large, deep lakes? Verh. Int. Verein. Limnol. 24: 1073–1076; 1991.

    Google Scholar 

  • Godshalk, G.L.; Wetzel, R.G. Decomposition of aquatic angiosperms. Aquat. Bot. 5:281–354; 1978.

    Article  CAS  Google Scholar 

  • Goodyear, C.D.; Edsall, T.A.; Ormsby Dempsy, D.H.; Moss, G.D.; Polanski, P.E. Atlas of the spawning and nursery areas of Great Lakes fishes. Fish and Wildlife Service, U.S. Department of the Interior, Washington, DC; 1982.

    Google Scholar 

  • Guillory, V.; Jones, M.D.; Rebel, M. A comparison of fish communities in vegetated and beach habitats. Florida Sci. 42:113–122; 1979.

    Google Scholar 

  • Hakanson, L. The influence of wind, fetch and water depth on the distribution of sediments in Lake Vanern, Sweden. Can. J. Earth Sci. 14: 397–412; 1977.

    Article  CAS  Google Scholar 

  • Hakanson, L. Bottom dynamics in lakes. Hydrobiologia 81: 47–57; 1981.

    Article  Google Scholar 

  • Hargeby, A.; Andersson, G.; Blindow, I.; Johansson, S. Trophic web structure in a shallow, eutrophic lake during dominance shift from phytoplankton to submersed macrophytes. Hydrobiologia 279/280: 83–90; 1994.

    Article  Google Scholar 

  • Heck, K.L.; Crowder, L.B. Habitat structure and predator-prey interactions in vegetated aquatic systems. In: Bell, S.S.; McCoy, E.D.; Mushinsky, H.R., eds. Habitat structure, the physical arrangement of objects in space. London: Chapman & Hall; 1991:281–299.

    Google Scholar 

  • Hough, R.A.; Fornwall, M.D.; Thompson, R.L.; Putt, D.A. Plant community dynamics in a chain of lakes: principle factors in the decline of rooted macrophytes with eutrophica-tion. Hydrobiologia 173: 199–217; 1989.

    Article  CAS  Google Scholar 

  • Hutchinson, G.E. Atreatise on limnology. Vol. 3. Limnological botany. New York: Wiley; 1975.

    Google Scholar 

  • Jaynes, M.L.; Carpenter, S.R. Effects of vascular and nonvascular macrophytes on sediment redox and solute dynamics. Ecology 67: 875–882; 1986.

    Article  CAS  Google Scholar 

  • Jeppesen, E.; Kristensen, P.; Jensen, J.P.; Sondergaard, M.; Mortensen, E.; Lauridsen, T. Recovery resilience following a reduction in external phosphorus loading of shallow, eutrophic Danish Lakes: duration, regulating factors and methods for overcoming resilience. Mem. Ist. Ital. Idrobiol. 48: 127–148; 1991.

    Google Scholar 

  • Johnson, D.L. Lake Erie wetlands: fisheries considerations. In: Krieger, K.A., ed. Lake Erie estuarine systems: issues, resources, status, and management. NOAA Estuarine Programs Office, Washington, DC, NOAA EMS Series 14; 1989:257–274.

    Google Scholar 

  • Keddy, P.A. Quantifying within-lake gradient of wave energy: interrelationships of wave energy substrate particle size and shoreline plants in Axe Lake Ontario. Aquat. Bot. 14: 41–58; 1982.

    Article  Google Scholar 

  • Keddy, P.A. Shoreline vegetation in Axe Lake, Ontario: effect of exposure on zonation patterns. Ecology 62: 331–344; 1983.

    Article  Google Scholar 

  • Kristensen, P.; Søndergaard, M.; Jeppesen, E. Resuspension in a shallow eutrophic lake. Hydrobiologia 228: 101–109; 1992.

    Article  CAS  Google Scholar 

  • Lauridsen, T.L.; Lodge, D.M. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator mediated use of macrophyte habitat. Limnol. Oceanogr. 41: 794–798; 1996.

    Article  Google Scholar 

  • Lauridsen, T.L.; Pedersen, L.J.; Jeppesen, E.; Søndergaard, M. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 18: 2283–2294; 1996.

    Article  Google Scholar 

  • Lillie, R.A.; Budd, J. Habitat architecture of Myriophyllum spicatum L. as an index to habitat quality for fish and macroinvertebrates. J. Freshwat. Ecol. 7: 113–125; 1992.

    Article  Google Scholar 

  • Lorang, M.S.; Stanford, J.A. Variability of shoreline erosion and accretion within a beach compartment of Flathead, Montana. Limnol. Oceanogr. 38:1783–1795; 1993.

    Article  Google Scholar 

  • MacCrimmon, H.R. Nutrients and sediment retention in a temperate marsh ecosystem. Int. Rev. Ges. Hydrobiol. 65: 719–744; 1980.

    Article  CAS  Google Scholar 

  • Miller, A.C.; Beckett, D.C.; Way, C.M.; Bacon, E.J. The habitat value of aquatic macropytes for macroinvertebrates. Technical Report A-89-3, U.S. Army Corps of Engineers, Washington, DC; 1989.

    Google Scholar 

  • Mittelbach, G.G. Predation and resource partitioning in two sunfishes (Centrachidae). Ecology 65: 499–513; 1984.

    Article  Google Scholar 

  • Mittelbach, G.G. Competition among refuging sunfishes and effects of fish density on littoral zone invertebrates. Ecology 69: 614–623; 1988.

    Article  Google Scholar 

  • Morin, J.O. Initial colonization of periphyton on natural and artificial apices of Myriophyllum heterophyllum Michx. Freshwat. Biol. 16: 685–694; 1986.

    Article  Google Scholar 

  • Moss, B. The microwaterscape—a four dimensional view of the interactions among water chemistry, phytoplankton, periphyton, macrophytes, animals and ourseleves. Wat. Sci. Techn. 32: 105–116; 1995.

    Article  CAS  Google Scholar 

  • Moss, B.; McGowan, S.; Carvalho, L. Determination of phytoplankton crop by top-down and bottom-up mechanisms in a group of English lakes, the West Midland meres. Limnol. Oceanogr. 39: 1020–1029; 1994.

    Article  CAS  Google Scholar 

  • O’Gorman, R. Distribution and abundance of larval fish in the nearshore waters of western Lake Erie. J. Great Lakes Res. 9: 14–22; 1983.

    Article  Google Scholar 

  • Osgood, R.A. Lake mixis and internal phosphorus dynamics. Arch. Hydrobiol. 113: 629–638; 1988.

    CAS  Google Scholar 

  • Pearsall, W.H. The aquatic and marsh vegetation of Esthwaite water. J. Ecol. 5: 180–201; 1917.

    Article  Google Scholar 

  • Pearsall, W.H. The aquatic vegetation of the English lakes. J. Ecol. 8:163–201; 1920.

    Article  Google Scholar 

  • Pearsall, W.H. Dynamic factors affecting aquatic vegetation. Proc. Int. Congr. Plant Sci. 1: 667–672; 1929.

    Google Scholar 

  • Planter, M. Physical and chemical conditions in the helophyte zone of the lake littoral. Pol. Arch. Hydrobiol. 20: 1–7; 1973.

    CAS  Google Scholar 

  • Prejs, A. Herbivory by temperate freshwater fishes and its consequences. Environ. Biol. Fish. 10: 281–296; 1984.

    Article  Google Scholar 

  • Prentki, R.T.; Adams, M.S.; Carpenter, S.R.; Gasith, A.; Smith, C.S.; Weiler, P.R. The role of submerged weedbeds in internal loading and interception of allochthonous materials in Lake Wingra, Wisconsin. Arch. Hydrobiol. Suppl. 57(2): 221–250; 1979.

    Google Scholar 

  • Rounsefell, G. A. Fish production in lakes as a guide for estimating production in proposed reservoirs. Copeia 1: 29–40; 1946.

    Article  Google Scholar 

  • Savino, J.F.; Stein, R.A. Predator-prey interaction between largemouth bass and bluegills as influenced by simulated submerged vegetation. Trans. Am. Fish. Soc. 111: 255–266; 1982.

    Article  Google Scholar 

  • Scheffer, M.; Hosper, S.H.; Meijer, M.L.; Moss, B.; Jeppesen, E. Alternative equilibria in shallow lakes. Trends. Ecol. Evol. 8: 275–279; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Schram, H.L., Jr.; Jirka, K.J.; Hoyer, M.V. Epiphytic macroinvertebrates on dominant macrophytes in two central Florida lakes. J. Freshwat. Ecol. 4:151–161; 1987.

    Article  Google Scholar 

  • Schriver, P.; Bøgestrand, J.; Jeppesen, E.; Søndergaard, M. Impact of submerged macrophytes on the interactions between fish, Zooplankton and phytoplankton: large scale enclosure experiments in shallow eutrophic lake. Freshwat. Biol. 33: 255–270; 1995.

    Article  Google Scholar 

  • Sculthrope, C.D. The biology of aquatic vascular plants. London: Edward Arnold; 1967.

    Google Scholar 

  • Sozska, G.J. Ecological relations between invertebrates and submerged macrophytes in the lake littoral. Ekol. Pol. 23: 393–415; 1975.

    Google Scholar 

  • Spence, D.H.N. The zonation of plants in freshwater lakes. In: MacFadyan, A.; Ford, E.D., eds. Advances in ecological research. London: Academic Press; 1982:37–126.

    Google Scholar 

  • Tabor, R.A.; Wurtsbaugh, W.A. Predation risk and the importance of cover for juvenile rainbow trout in lentic systems. Trans. Am. Fish. Soc. 120: 728–738; 1991.

    Article  Google Scholar 

  • Tilzer, M.M. Specific properties of large lakes. In: Tilzer, M.M.; Cerruya, C, eds. Large lakes, ecological structure and function. New York: Springer-Verlag; 1990: 39–45.

    Google Scholar 

  • Timms, R.M.; Moss, B. Prevention of growth of potentially dense phytoplankton populations by Zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–486; 1984.

    Article  Google Scholar 

  • Vollenweider, R.A. Input-output models with special reference to phosphorus loading concept in limnology. Schweiz. Z. Hydrol. 37: 53–84; 1975.

    CAS  Google Scholar 

  • Wetzel, R.G. The role of the littoral zone and detritus in lake metabolism. Arch. Hydrobiol. 13: 145–161; 1979.

    Google Scholar 

  • Wetzel, R.G. Detritus, macrophytes and nutrient cycling in lakes. Mem. Ist. Ital. Idrobiol. 47: 233–249; 1990.

    Google Scholar 

  • Wetzel, R.G.; Hough, R.A. Productivity and the role of aquatic macrophytes in lakes. An assessment. Pol. Arch. Hydrobiol. 20: 9–19; 1973.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gasith, A., Hoyer, M.V. (1998). Structuring Role of Macrophytes in Lakes: Changing Influence Along Lake Size and Depth Gradients. In: Jeppesen, E., Søndergaard, M., Søndergaard, M., Christoffersen, K. (eds) The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, vol 131. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0695-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0695-8_29

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6871-0

  • Online ISBN: 978-1-4612-0695-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics