Cascading Effects on Microbial Food Web Structure in a Dense Macrophyte Bed

  • Klaus Jürgens
  • Erik Jeppesen
Part of the Ecological Studies book series (ECOLSTUD, volume 131)


Heterotrophic microorganisms play a major role in the carbon and energy flow and nutrient recycling of aquatic systems. Planktonic bacteria are regulated by the supply of organic and inorganic nutrients and by predation of bacterivorous organisms. Most studies on controlling mechanisms of bacterioplankton have focused on assessing the direct effects of these factors. However, more recent studies have revealed that microbial and classic food webs have an array of interdependencies and are linked in many different ways (Turner and Roff, 1993). Therefore, the structure of the whole planktonic community must be considered for a better understanding of population dynamics at the microbial level (Pace et al., 1990).


Scale Height Galactic Plane Orbital Velocity Halo Orbit Thick Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arndt, H. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)—a review. Hydrobiologia 255/256: 231–246; 1993.CrossRefGoogle Scholar
  2. Caron, D.A.; Lim, E.L.; Miceli, G.; Waterbury, J.B.; Valois, F.W. Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community. Mar. Ecol. Prog. Ser. 76: 205–217; 1991.CrossRefGoogle Scholar
  3. Carpenter, S.R.; Kitchell, J.F.; Hodgson, J.R. Cascading trophic interactions and lake productivity. BioScience 35: 635–639; 1985.CrossRefGoogle Scholar
  4. Christoffersen, K.; Riemann, B.; Klysner, A.; Søndergaard, M. Potential role of fish predation and natural populations of Zooplankton in structuring a plankton community in eutrophic lake water. Limnol. Oceanogr. 38: 561–573; 1993.CrossRefGoogle Scholar
  5. Jeppesen, E.; Jensen, J.P.; Søndergaard, M.; Lauridsen, T.; Pedersen, L.J.; Jensen, L. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164; 1997.CrossRefGoogle Scholar
  6. Jeppesen, E.; Søndergaard, M.; Søndergaard, M.; Christoffersen, K.; Jürgens, K.; Theil-Nielsen, J.; Schlüter, L. Cascading trophic interactions in the littoral zone of a shallow lake (submitted).Google Scholar
  7. Jürgens, K. The impact of Daphnia on microbial food webs—a review. Mar. Microb. Food Webs 8: 295–324; 1994.Google Scholar
  8. Jürgens, K.; Güde, H. The potential importance of grazing-resistant bacteria in planktonic systems. Mar. Ecol. Prog. Ser. 112: 169–188; 1994.CrossRefGoogle Scholar
  9. Jürgens, K.; Arndt, H.; Rothhaupt, K.O. Zooplankton-mediated changes of bacterial community structure. Microb. Ecol. 27: 27–42; 1994.CrossRefGoogle Scholar
  10. Lampert, W. The relationship between Zooplankton biomass and grazing: a review. Lim-nologica 19: 11–20; 1988.Google Scholar
  11. Lauridsen, T.; Buenk, I. Diel changes in the horizontal distribution of Zooplankton in the littoral zone of two shallow eutrophic lakes. Arch. Hydrobiol. 137: 161–176; 1996.Google Scholar
  12. Mazumder, A.; McQueen, D.J.; Taylor, W.D.; Lean, D.R.S.; Dickman, M.D. Micro-and mesozooplankton grazing on natural pico-and nanoplankton in contrasting plankton communities produced by planktivore manipulation and fertilization. Arch. Hydrobiol. 118: 257–282; 1990.Google Scholar
  13. Müller, H.; Schöne, A.; Pinto-Coelho, R.M.; Schweizer, A.; Weisse, T. Seasonal succession of ciliates in Lake Constance. Microb. Ecol. 21: 119–138; 1991.CrossRefGoogle Scholar
  14. Pace, M.L. Heterotrophic microbial processes. In: Carpenter, S.R.; Kitchell, J.E., eds. Cascading trophic interactions. Cambridge: Cambridge University Press; 1993: 252–277.Google Scholar
  15. Pace, M.L.; McManus, G.B.; Findlay, S.E.G. Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol. Oceanogr. 35: 795–808; 1990.CrossRefGoogle Scholar
  16. Porter, K.G.; Feig, Y.S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–947; 1980.CrossRefGoogle Scholar
  17. Sanders, R.W.; Leeper, D.A.; King, C.H.; Porter, K.G. Grazing by rotifers and crustacean Zooplankton on nanoplanktonic protists. Hydrobiologia 288: 167–181; 1994.CrossRefGoogle Scholar
  18. Scheffer, M.; Hosper, S.H.; Meijer, M.-L.; Moss, B.; Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8: 275–279; 1993.PubMedCrossRefGoogle Scholar
  19. Schriver, P.; Bøgestrand, J.; Jeppesen, E.; Søndergaard, M. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwat. Biol. 33: 255–270; 1995.CrossRefGoogle Scholar
  20. Skibbe, O. An improved quantitative protargol stain for ciliates and other planktonic protists. Arch. Hydrobiol. 130: 339–347; 1994.Google Scholar
  21. Timms, R.M.; Moss, B. Prevention of growth of potentially dense phytoplankton populations by Zooplankton grazing in the presence of zooplanktivorous fish in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–486; 1984.CrossRefGoogle Scholar
  22. Turner, J.T.; Roff, J.C. Trophic levels and trophospecies in marine plankton: lessons from the microbial food web. Mar. Microb. Food Webs 7:225–248; 1993.Google Scholar
  23. Wikner, J.; Hagström, A. Evidence for a tightly coupled nanoplanktonic predator-prey link regulating the bacterivores in the marine environment. Mar. Ecol. Prog. Ser. 50: 137–145; 1988.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Klaus Jürgens
  • Erik Jeppesen

There are no affiliations available

Personalised recommendations