Skip to main content

Effects of Submerged Aquatic Macrophytes on Nutrient Dynamics, Sedimentation, and Resuspension

  • Chapter
The Structuring Role of Submerged Macrophytes in Lakes

Part of the book series: Ecological Studies ((ECOLSTUD,volume 131))

Abstract

Accelerated eutrophication due to excessive nutrient (particularly P) loadings has led to great interest in the role of submerged macrophytes in the nutritional economy of freshwater aquatic systems. Submerged macrophytes are unique among rooted aquatic vegetation because they link the sediment with overlying water. This linkage is responsible for great complexities in nutrition and has important implications for nutrient cycling. Despite increased attention to vegetated shallow water systems within the past 20 years, no consensus exists on whether submerged macrophytes function as sources or sinks for particular nutrients. As a result, it has been necessary to evaluate quantitatively nutrient source-sink relationships, involving both soluble and particulate nutrient fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agami, M.; Waisel, Y. The ecophysiology of roots of submerged vascular plants. Physiol. Veg. 24: 607–624; 1986.

    CAS  Google Scholar 

  • Andersen, J.M. Influence of pH on release of phosphorus from lake sediments. Arch. Hydrobiol. 76: 411–419; 1975.

    CAS  Google Scholar 

  • Anderson, M.R.; Kalff, J. Nutrient limitation of Myriophyllum spicatum growth in situ. Freshwat. Biol. 16: 735–743; 1986.

    Article  Google Scholar 

  • Anderson, N.J. Spatial pattern of recent sediment and diatom accumulation in a small monomictic, eutrophic lake. J. Paleolimnol. 3: 143–168; 1990.

    Article  Google Scholar 

  • Barko, J.W. Influence of potassium source (sediment vs. open water) and sediment composition on the growth and nutrition of a submersed freshwater macrophyte (Hydrilla verticillata (L.f.) Royle). Aquat. Bot. 12: 157–172; 1982.

    Article  CAS  Google Scholar 

  • Barko, J.W.; Smart, R.M. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwat. Biol. 10: 229–238; 1980.

    Article  CAS  Google Scholar 

  • Barko, J.W.; Smart, R.M. Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology 67: 1328–1340; 1986.

    Article  CAS  Google Scholar 

  • Barko, J.W.; Adams, M.S.; Clesceri, N.L. Environmental factors and their consideration in the management of submersed aquatic vegetation: a review. J. Aquat. Plant Manage. 24: 1–10; 1986.

    Google Scholar 

  • Barko, J.W.; Smart, R.M.; McFarland, D.G.; Chen, R.L. Interrelationships between the growth of Hydrilla verticillata (L.f.) Royle and sediment nutrient availability. Aquat. Bot. 32: 205–216; 1988.

    Article  Google Scholar 

  • Barko, J.W.; Gunnison, D.; Carpenter, S.R. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat. Bot. 41:41–65; 1991.

    Article  Google Scholar 

  • Boers, P.C.M. The Influence of pH on phosphate release from lake sediments. Wat. Res. 25: 309–311; 1991.

    Article  CAS  Google Scholar 

  • BostrÖm, B.; Jansson, M.; Forsberg, C. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59; 1982.

    Google Scholar 

  • Carignan, R. Nutrient dynamics in a littoral sediment colonized by the submersed macrophyte Myriophyllum spicatum. Can. J. Fish. Aquat. Sci. 42: 1303–1311; 1985.

    Article  CAS  Google Scholar 

  • Carignan, R.; Kalff, J. Phosphorus sources for aquatic weeds: water or sediment. Science 207: 987–989; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, S.R. Enrichment of Lake Wingra, Wisconsin, by submersed macrophyte decay. Ecology 61: 1145–1155; 1980.

    Article  Google Scholar 

  • Carpenter, S.R. Submersed vegetation: an internal factor in lake ecosystem succession. Am. Nat. 118: 372–383; 1981.

    Article  Google Scholar 

  • Carper, G.L.; Bachmann, R.W. Wind resuspension of sediments in a prairie lake. Can. J. Fish. Aquat. Sci. 41: 1763–1767; 1984.

    Article  Google Scholar 

  • Carter, V.; Barko, J.W.; Godshalk, G.L.; Rybicki, N.B. Effects of submersed macrophytes on water quality in the Tidal Potomac River, Maryland. J. Freshwat. Ecol. 4: 493–501; 1988.

    Article  CAS  Google Scholar 

  • Chen, R.L.; Barko, J.W. Effects of freshwater macrophytes on sediment chemistry. J. Freshwat. Ecol. 4: 279–289; 1988.

    Article  CAS  Google Scholar 

  • Christiansen, R.; Skøvmand Friis, N.J.; Sondergaard, M. Leaf production and nitrogen and phosphorus tissue content of Littorella uniflora (L.) Aschers in relation to nitrogen and phosphorus enrichment of the sediment in oligotrophic Lake Hampen, Denmark. Aquat. Bot. 23: 1–11; 1985.

    Article  CAS  Google Scholar 

  • Davis, M.B. Pollen grains in lake sediments: redeposition caused by seasonal water circulation. Science 162: 796–799; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Davis, M.B. Redeposition of pollen grains in lake sediment. Limnol. Oceanogr. 18: 44–52; 1973.

    Article  Google Scholar 

  • Davis, M.B.; Brubaker, L.B. Differential sedimentation of pollen grains in lakes. Limnol. Oceanogr. 18: 635–646; 1973.

    Article  Google Scholar 

  • Davis, M.B.; Moeller, R.E.; Ford, J. Sediment focusing and pollen influx. In: Haworth, E.Y.; Lund, J.W., eds. Lake sediment and environmental history. Leicester, England: Leicester University; 1984.

    Google Scholar 

  • Denny, P. Solute movement in submerged angiosperms. Biol. Rev. 55: 65–92; 1980.

    Article  CAS  Google Scholar 

  • Dieter, C.D. The importance of emergent vegetation in reducing sediment resuspension in wetlands. J. Freshwat. Ecol. 5: 467–473; 1990.

    Article  Google Scholar 

  • Dillon, P.J.; Evans, R.D.; Molot, L.A. Retention and resuspension of phosphorus, nitrogen, and iron in a central Ontario lake. Can. J. Fish. Aquat. Sci. 47: 1269–1274; 1990.

    Article  CAS  Google Scholar 

  • Drake, J.C.; Heaney, S.I. Occurrence of phosphorus and its potential remobilization in the littoral sediments of a productive English lake. Freshwat. Biol., 17: 513–523; 1987.

    Article  CAS  Google Scholar 

  • Duarte, C.M.; Kalff, J. Littoral slope as a predictor of maximum biomass of submerged macrophyte communities. Limnol. Oceanogr. 31: 1072–1080; 1986.

    Article  Google Scholar 

  • Eckman, J.E.; Duggins, D.O.; Sewell, A.T. Ecology of understory kelp beds. I. Effects of kelps on flow and particle transport near the bottom. J. Exp. Mar. Biol. Ecol. 129:173–187; 1989.

    Article  Google Scholar 

  • Evans, R.D.; Rigler, F.H. Measurement of whole lake sediment accumulation and phosphorus retention using lead-210 dating. Can. J. Fish. Aquat. Sci. 37: 817–822; 1980.

    Article  Google Scholar 

  • Evans, R.D.; Rigler, R.H. A test of lead-210 dating for measurement of whole lake soft sediment accumulation. Can. J. Fish. Aquat. Sci. 40: 506–515; 1983.

    Article  Google Scholar 

  • Fonseca, M.S.; Fisher, J.S.; Zieman, J.C.; Thayer, G.W. Influence of the sea grass, Zostera marina L., on current flow. Est. Coast. Shelf Sci. 15:351–364; 1982.

    Article  Google Scholar 

  • Gregg, W.W.; Rose, F.L. The effects of aquatic macrophytes on the stream microenviron-ment. Aquat. Bot. 14: 309–324; 1982.

    Article  Google Scholar 

  • HÃ¥kanson, L. The influence of wind, fetch and water depth on the distribution of sediments in Lake Vänern, Sweden. Can. J. Earth Sci. 14: 397–412; 1977.

    Article  Google Scholar 

  • Hanson, M.A.; Butler, M.G. Responses of plankton, turbidity, and macrophytes to bio-manipulation in a shallow prairie lake. Can. J. Fish. Aquat. Sci. 51: 1180–1188; 1994.

    Article  Google Scholar 

  • Hellström, T. The effect of resuspension on algal production in a shallow lake. Hydro-biologia 213: 183–190; 1991.

    Article  Google Scholar 

  • Hilton, J. A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnol. Oceanogr. 30: 1131–1143; 1985.

    Article  Google Scholar 

  • Hilton, J.; Lishman, J.P.; Allen P.V. The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake. Limnol. Oceanogr. 31: 125–133; 1986.

    Article  Google Scholar 

  • Hosper, S.H. Biomanipulation, new perspectives for restoration of shallow, eutrophic lakes in The Netherlands. Hydrobiol. Bull. 23: 5–10; 1989.

    Article  Google Scholar 

  • Hosper, S.H.; Jagtman, E. Biomanipulation additional to nutrient control for restoration of shallow lakes in The Netherlands. Hydrobiologia 200/201: 523–534; 1990.

    Article  Google Scholar 

  • Howard-Williams, C. Studies on the ability of a Potamogeton pectinatus community to remove dissolved nitrogen and phosphorus compounds from lake water. J. Appl. Ecol. 18: 619–637; 1981.

    Article  CAS  Google Scholar 

  • Huebert, D.B.; Gorham, P.R. Biphasic mineral nutrition of the submersed aquatic macrophyte Potamogeton pectinatus L. Aquat. Bot. 16: 269–284; 1983.

    Article  CAS  Google Scholar 

  • Imberger, J.; Parker, G. Mixed layer dynamics in a lake exposed to a spatially variable wind field. Limnol. Oceanogr. 30: 473–488; 1985.

    Article  Google Scholar 

  • Imberger, J.; Patterson, J.C. Physical limnology. Adv. Appl. Mech. 27: 303–475; 1990.

    Article  Google Scholar 

  • Jackson, L.J.; Rowen, D.J.; Cornett, R.J.; Kalff, J. Myriophyllum spicatum pumps essential and nonessential trace elements from sediment to epiphytes. Can. J. Fish. Aquat. Sci. 51: 1769–1773; 1994a.

    Article  CAS  Google Scholar 

  • Jackson, L.J.; Rasmussen, J.B.; Kalff, J. A mass-balance analysis of trace metals in two weedbeds. Wat. Air Soil Pollut. 75: 107–119; 1994b.

    Article  CAS  Google Scholar 

  • James, W.F.; Barko, J.W. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperate reservoir. Arch. Hydrobiol. 120: 129–142; 1990.

    Google Scholar 

  • James, W.F.; Barko, J.W. Estimation of phosphorus exchange between littoral and pelagic zones during nighttime convective circulation. Limnol. Oceanogr. 36: 179–187; 1991a.

    Article  CAS  Google Scholar 

  • James, W.F.; Barko, J.W. Littoral-pelagic phosphorus dynamics during nighttime convec-tive circulation. Limnol. Oceanogr. 36: 949–960; 1991b.

    Article  CAS  Google Scholar 

  • James, W.F.; Barko, J.W. Analysis of summer phosphorus fluxes within the pelagic zone of Eau Galle Reservoir, Wisconsin. Lake Reserv. Manage. 8:61–71; 1993.

    Article  Google Scholar 

  • James, W.F.; Barko, J.W. Macrophyte influences on sediment resuspension and export in a shallow impoundment. Lake Reserv. Manage. 10:95–102; 1994.

    Article  Google Scholar 

  • James, W.F.; Taylor, W.D.; Barko, J.W. Production and vertical migration of Ceratium hirundinella in relation to phosphorus availability in Eau Galle Reservoir, Wisconsin. Can. J. Fish Aquat. Sci. 49: 694–700; 1992.

    Article  CAS  Google Scholar 

  • James, W.F.; Barko, J.W.; Eakin, H.L. Convective water exchange during differential heating and cooling: implications for dissolved constituent transport. Hydrobiologia. 294: 167–176; 1994.

    Article  CAS  Google Scholar 

  • James, W.F.; Smith, C.S.; Barko, J.W.; Field, S.J. Direct and indirect influences of aquatic macrophyte communities on phosphorus mobilization from littoral sediments of an inlet region in Lake Delavan, Wisconsin. Technical Report W-95-2. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS; 1995.

    Google Scholar 

  • James, W.F.; Barko, J.W.; Field, S.J. Phosphorus mobilization from littoral sediments of an inlet region in Lake Delavan, Wisconsin. Arch. Hydrobiol. 138: 245–257; 1996.

    CAS  Google Scholar 

  • Jensen, H.S.; Kristensen, P.; Jeppesen, E.; Skytte, A. Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediment in shallow lakes. Hydrobiologia 235: 731–743; 1992.

    Article  Google Scholar 

  • Landers, D.H. Effects of naturally senescing aquatic macrophytes on nutrient chemistry and chlorophyll a of surrounding waters. Limnol. Oceanogr. 27: 428–439; 1982.

    Article  CAS  Google Scholar 

  • Lijklema, L. Interaction of orthophosphate with iron (III) and aluminum hydroxides. Environ. Sci. Tech. 5: 537–541; 1977.

    Google Scholar 

  • Likens, G.E.; Davis, M.B. Post-glacial history of Mirror Lake and its watershed in New Hampshire USA: an initial report. Verh. Int. Verein. Theor. Angew. Limnol. 19:982–993; 1975.

    Google Scholar 

  • Lowenhaupt, B. The transport of calcium and other cations in submerged aquatic plants. Biol. Rev. 31: 371–395; 1956.

    Article  CAS  Google Scholar 

  • Maceina, M.J.; Soballe, D.M. Wind-related limnological variation in Lake Okeechobee, FL. Lake Reserv. Manage. 6: 93–100; 1990.

    Article  Google Scholar 

  • Madsen, T.V.; Warncke, E. Velocities of currents around and within submerged aquatic vegetation. Arch. Hydrobiol. 97: 389–394; 1983.

    Google Scholar 

  • Moeller, R.E.; Wetzel, R.G. Littoral vs profundal components of sediment accumulation: contrasting roles as phosphorus sinks. Verh. Int. Verein. Theor. Angew. Limnol. 23:386–393; 1988.

    Google Scholar 

  • Monismith, S.; Imberger, J.; Morison, M. Convective motions in the sidearm of a small reservoir. Limnol. Oceanogr. 35: 1676–1702; 1990.

    Article  Google Scholar 

  • Mortimer, C.H. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29: 280–329; 1941.

    Article  CAS  Google Scholar 

  • Patterson, K.J.; Brown, J.M.A. Growth and elemental composition of Lagarosiphon major in response to water and substrate nutrients. Prog. Water Techn. 2: 231–246; 1979.

    Google Scholar 

  • Petticrew, E.L.; Kalff, J. Predictions of surficial sediment composition in the littoral zone of lakes. Limnol. Oceanogr. 36: 384–392; 1991.

    Article  Google Scholar 

  • Petticrew, E.L.; Kalff, J. Water flow and clay retention in submerged macrophyte beds. Can. J. Fish. Aquat. Sci. 49: 2483–2489; 1992.

    Article  Google Scholar 

  • Prentki, R.T. Depletion of phosphorus from sediment colonized by Myriophyllum spicatum L. In: Breck, J.E.; Prentki, R.T.; Loucks, O.L., eds. Aquatic plants, lake management, and ecosystem consequences of lake harvesting. Madison, WI: Institute for Environmental Studies, University of Wisconsin; 1979: 161–176.

    Google Scholar 

  • Prentki, R.T.; Adams, M.S.; Carpenter, S.R.; Gasith, A.; Smith, S.C.; Weiler, P.R. The role of submersed weedbeds in internal loading and interception of allochthonous materials in Lake Wingra, Wisconsin, USA. Arch. Hydrobiol. Suppl. 57: 221–250; 1979.

    Google Scholar 

  • Rogers, S.J.; McFarland, D.G.; Barko, J.W. Evaluation of the growth of Vallisneria amer-icana Michx. in relation to sediment nutrient availability. Lake Reserv. Manage. 11: 57–66; 1995.

    Article  Google Scholar 

  • Scheffer, M. Multiplicity of stable states in freshwater systems. Hydrobiologia 200/201: 475–486; 1990.

    Article  Google Scholar 

  • Scheffer, M.; Hosper, S.H.; Meir, M-L.; Moss, B.; Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8: 275–279; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D.W. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184: 897–898; 1974.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D.W. Evolution of phosphorus limitation in lakes. Science 195:260–262; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Sculthrope, C.D. The biology of aquatic vascular plants. London: Edward Arnold; 1967.

    Google Scholar 

  • Smart, R.M.; Barko, J.W. Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquat. Bot. 21: 251–263; 1985.

    Article  Google Scholar 

  • Smart, R.M.; Barko, J.W. Effects of water chemistry on aquatic plants: growth and photosynthesis of Myriophyllum spicatum L. Technical Report A-86-2, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS; 1986.

    Google Scholar 

  • Smith, C.S.; Adams, M.S. Phosphorus transfer from sediments by Myriophyllum spicatum. Limnol. Oceanogr. 31: 1312–1321; 1986.

    Article  CAS  Google Scholar 

  • Søndergaard, M.; Kristensen, P.; Jeppesen, E. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arresø, Denmark. Hydrobiologia 228: 91–99; 1992.

    Article  Google Scholar 

  • Stefan, H.G.; Horsch, G.M.; Barko, J.W. A model for the estimation of convective exchange in the littoral region of a shallow lake during cooling. Hydrobiologia 174: 225–234; 1989.

    Article  Google Scholar 

  • Taylor, W.D.; Barko, J.W.; James, W.F. Contrasting diel patterns of vertical migration in the dinoflagellate Ceratium hirundinella in relation to phosphorus supply in a north temperate reservoir. Can. J. Fish. Aquat. Sci. 45: 1093–1098; 1988.

    Article  Google Scholar 

  • Trisal, C.L.; Kaul, S. Sediment composition, mud-water interchanges and the role of macrophytes in Dal Lake, Kashmir. Int. Rev. Ges. Hydrobiol. 68: 671–682; 1983.

    Article  CAS  Google Scholar 

  • Weiler, P.R. Littoral-pelagic exchange in Lake Wingra, Wisconsin, as determined by a circulation model. Madison, WI: University of Wisconsin, Madison, Inst. Environ. Stud. Rep. 100; 1978.

    Google Scholar 

  • Wetzel, R.G. The role of the littoral zone and detritus in lake metabolism. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13: 145–161; 1979.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barko, J.W., James, W.F. (1998). Effects of Submerged Aquatic Macrophytes on Nutrient Dynamics, Sedimentation, and Resuspension. In: Jeppesen, E., Søndergaard, M., Søndergaard, M., Christoffersen, K. (eds) The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, vol 131. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0695-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0695-8_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6871-0

  • Online ISBN: 978-1-4612-0695-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics