Global Minimization of Lennard-Jones Functions on Transputer Networks

  • Klaus Ritter
  • Stephen M. Robinson
  • Stefan Schäffler
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 94)


This paper presents a three-phase computational procedure for minimizing molecular energy potential functions of the pure Lennard-Jones type. The first phase consists of a special heuristic for generating an initial atomic configuration. In the second phase a global minimization method is applied to compute a configuration close to the optimal solution. Finally, the third phase uses this configuration as the starting point for a local minimization method. Since the second and third phases are very suitable for parallel implementation, we describe briefly our implementation of the method in a parallel version of C on a transputer network, and we exhibit numerical results for approximate optimization of clusters with up to 20,000 atoms.

Key words

global optimization Lennard-Jones potential transputer networks parallel computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.H. Byrd, E. Eskow, and R.B. Schnabel, A new large-scale global optimization method and its application to Lennard-Jones problems, Technical report, University of Colorado at Boulder (1992).Google Scholar
  2. [2]
    T. Coleman, D. Shalloway, and Z. Wu, Isotropic effective energy simulated annealing searches for low energy molecular cluster states, Technical Report, Cornell Theory Center, Cornell University, Ithaca, NY (1992).Google Scholar
  3. [3]
    T. Coleman, D. Shalloway, and Z. Wu, A parallel build-up algorithm for global energy minimization of molecular clusters using effective energy simulated an-nealing,Technical Report, Cornell Theory Center, Cornell University, Ithaca, NY (1993).Google Scholar
  4. [4]
    M.R. Hoare and P. Pal, Physical cluster mechanics: statics and energy surfaces for monatomic systems Adv. Phys. 20, pp. 161–196 (1971).CrossRefGoogle Scholar
  5. [5]
    I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, Berlin, Heidelberg (1991).zbMATHCrossRefGoogle Scholar
  6. [6]
    R.S. Maier, J.B. Rosen, and G.L. Xue, A discrete-continuous algorithm for molecular energy minimization,Technical report, U. S. Army High-Performance Computing Research Center, University of Minnesota, Minneapolis, MN (1992).Google Scholar
  7. [7]
    J.A. Northby, Structure and binding of Lennard-Jones clusters: 13 ≤N ≤147, J. Chem. Phys. 87, pp. 6166–6177 (1987).CrossRefGoogle Scholar
  8. [8]
    P. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, New York, Berlin, Heidelberg (1990).zbMATHGoogle Scholar
  9. [9]
    S. Schäppler, Unconstrained global optimization using stochastic integral equations, Optimization 35, pp. 43–60 (1995).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Klaus Ritter
    • 1
  • Stephen M. Robinson
    • 2
  • Stefan Schäffler
    • 1
  1. 1.Fakultät für MathematikTechnische Universität MünchenMünchenGermany
  2. 2.Department of Industrial EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations