Skip to main content

The Kuparuk River: A Long-Term Study of Biological and Chemical Processes in an Arctic River

  • Chapter
Freshwaters of Alaska

Abstract

Our studies have focused on carbon and nutrient dynamics, primary productivity and decomposition, and abundance and life histories of the macroconsumers in the Kuparuk River in arctic Alaska. The overall objective of these studies is to understand the processes controlling primary and secondary productivity, nutrient dynamics, and trophic structure.

Our dear friend and colleague. J. Robie Vestal passed away prior to completion of the final draft of this chapter. We miss him much.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chapin FS, III, Fetcher N, Kielland K, Everett KR, Linkins AE (1978) Productivity an nutrient cycling of Alaska tundra: Enhancement by flowing soil water. Ecology 69:693–702.

    Google Scholar 

  • Craig PC, McCart PJ (1975) Classification of stream types in Beaufort Sea drainages between Prudhoe Bay, Alaska and the MacKenzie Delta, NWT. Arctic Alpine Res 7:183–198.

    Article  CAS  Google Scholar 

  • Deegan LA, Peterson BJ (1992) Whole river fertilization stimulates fish production in an Arctic tundra river. Can J Fish Aquat Sci 49:1890–1901.

    Article  Google Scholar 

  • Federle TW, McKinley VL, Vestal JR (1982) Effects nutrient enrichment on the colonization and decomposition of plant detritus by the microbiota of an arctic lake. Can J Microbiol 28:1199–1205.

    Article  CAS  Google Scholar 

  • Fiebig DM (1988) A study of riparian zone and stream water chemistries and organic matter utilisation at the stream-bed interface. Ph.D. Thesis, University of Wales.

    Google Scholar 

  • Ford TE, Lock MA (1987) Epilithic metabolism of dissolved organic carbon in boreal forest rivers. FEMS Microbiol Ecol 45:89–97.

    Article  Google Scholar 

  • Gallepp GW (1977) Responses of caddisfly larvae (Brachycentras spp.) to temperature, food availability, and current velocity. Am Midland Naturalist 98:59–84.

    Article  Google Scholar 

  • Gallepp GW, Hasler AD (1975) Behavior of larval caddisflies (Brachycentras spp.) as influenced by marking. Amer Midland Naturalist 93:247–254.

    Article  Google Scholar 

  • Gibeau G (1992) Grazer and nutrient limitation of algal biomass in an arctic tundra river. MS Thesis. University of Cincinnati, Cincinnati, OH.

    Google Scholar 

  • Hauer FR, Benke AC (1991) Rapid growth of snag-dwelling chironomids in a blackwater river: the influence of temperature and discharge. J North Am Benthol Soc 10:154–164.

    Article  Google Scholar 

  • Hershey AE, Hiltner AL (1988) Effect of a caddisfly on black fly density: Interspecific interactions limit black flies in an arctic river. J North Am Benthol Soc 7:188–196.

    Article  Google Scholar 

  • Hershey AE, Hiltner AL, Hullar MAJ et al. (1988) Nutrient influence on a stream grazer: Orthocladius microcommunities respond to nutrient input. Ecology 69:1383–1392.

    Article  Google Scholar 

  • Hinterleitner-Anderson D, Hershey AE, Schuldt JA (1992) The effects of river fertilization on mayfly (Baetis sp.) drift patterns and population density in an arctic river. Hydrobiologia 240:247–258.

    Article  Google Scholar 

  • Hobbie JE, Rublee P (1975) Bacterial production in an arctic pond. Verh Internat Verein Limnol 19:466–471.

    Google Scholar 

  • Hobbie JE, Corliss TL, Peterson BJ (1983) Seasonal patterns of bacterial abundance in an arctic lake. Arctic Alpine Res 15:253–259.

    Article  Google Scholar 

  • Hullar MAJ, Johnson CG, Kaufman M (1987) Response of epilithic heterotrophic microbiota to carbon additions in an oligotrophic arctic river. Abstr Ann Mg Am Soc Microbiol 87: 189.

    Google Scholar 

  • Hullar MAJ, Vestal JR (1986) Plant litter decomposition in an arctic stream. Abstr Ann Mg Am Soc Microbiol 86: 169.

    Google Scholar 

  • Hullar MAJ, Vestal JR (1989) The effects of nutrient limitation and stream discharge on the epilithic microbial community of an oligotrophic Arctic stream. Hydrobiologia 172:19–26.

    Article  CAS  Google Scholar 

  • Kane DL, Hinzman LD, Benson CS, Everett KR (1989) Hydrology of Imnavait Creek, an arctic watershed. Holarctic Ecol 12:262–269.

    Google Scholar 

  • Kieber RJ, Zhou X, Mopper K (1990) Formation of carbonyl compounds from UV induced photodegradation of humic substances in natural waters: fate of riverine carbon in the sea. Limnol Oceanogr 35:1503–1515.

    Article  CAS  Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251:298–301.

    Article  PubMed  CAS  Google Scholar 

  • Lock MA, Ford TE (1985) Microcalorimetric approach to determine relationships between energy supply and metabolism in river epilithon. Appl Environ Microbiol 49:408.

    PubMed  CAS  Google Scholar 

  • Lock MA, Ford TE, Fiebig DM et al. (1989) A biogeochemical survey of rivers and streams in the mountains and foothills province of arctic Alaska. Arch Hydrobiol 115:499–521.

    CAS  Google Scholar 

  • Lock MA, Ford TE, Hullar MAJ et al. (1990) Phosphorus limitation in an arctic river biofilm—a whole ecosystem experiment. Water Res 24:1545–1549.

    Article  CAS  Google Scholar 

  • McKinley VL, Federle TW, Vestal JR (1982) Effects of petroleum hydrocarbons on plant litter microbiota in an arctic lake. Appl Environ Microbiol 43:129–135.

    PubMed  CAS  Google Scholar 

  • Miller MC, Hater GR, Spart P, Westlake P, Yeakel D (1986) Primary production and its control in Toolik Lake, Alaska. Arch Hydrobiol Suppl 74:97–131.

    Google Scholar 

  • Miller MC, Stout JR, Alexander V (1986) Effects of a controlled under-ice oil spill on invertebrates of an arctic and a subarctic stream. Environ Pollut 42:99–132.

    Article  Google Scholar 

  • Minshall GW (1978) Autotrophy in stream ecosystems. BioScience 28:767–771.

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and organic matter quality on C, N, and P mineralization in soils from six arctic ecosystems. Ecology 72:242–253.

    Article  Google Scholar 

  • Oswood MW, Everett KR, Schell DM (1989) Some physical and chemical characteristics of an arctic beaded stream. Holarctic Ecol 12:290–295.

    Google Scholar 

  • Oswood MW, Milner AM, Irons JG, III. (1992) Climate change and Alaskan rivers and streams. In Firth P, Fisher SG (Eds) Global climate change and freshwater ecosystems. Springer-Verlag, NY.

    Google Scholar 

  • Peterson BJ, Deegan L, Helfrich J et al. (1993) Biological responses of a tundra river to fertilization. Ecology 74:653–672.

    Article  CAS  Google Scholar 

  • Peterson BJ, Hobbie JE, Corliss TL (1986) Carbon flow in a tundra stream. Can J Fish Aquat Sci 43:1259–1270.

    Article  Google Scholar 

  • Peterson BJ, Hobbie JE, Corliss TL, Kriet K (1983) A continuous-flow periphyton bioassy: Tests of nutrient limitation in a tundra stream. Limnol Oceanogr 28: 583–591.

    Article  CAS  Google Scholar 

  • Peterson BJ, Hobbie JE, Hershey AE et al. (1985) Transformation of a tundra stream from heterotrophy to autotrophy by addition of phophorus. Science 229:1383–1386.

    Article  PubMed  CAS  Google Scholar 

  • Prentki RT, Miller MC, Barsdate RJ et al. (1980) Chemistry. In Hobbie JE (Ed) Limnology of tundra ponds. Dowden, Hutchinson, and Ross, Stroudsburg, PA.

    Google Scholar 

  • Richey JE (1983) Interactions of C, N, P, and S in river systems: A biogeographical model. In Bolin B, Cook RB (Eds) The major biogeochemical cycles and their interactions. Wiley, NY.

    Google Scholar 

  • Reis R (1988) Foraging behavior of arctic grayling (Thymallus arcticus) in a tundra stream. M.S. Thesis, University of Cincinnati, Cincinnati, OH.

    Google Scholar 

  • Selkregg LL (Ed) (1977) Alaska Regional Profiles: Arctic Region. Arctic Environmental Information and Data Center, Anchorage, AK.

    Google Scholar 

  • Strome DJ, Miller MC (1978) Photolytic changes in dissolved humic substances. Int Verein Theor Angew Limnol Verh 20:1248–1254.

    Google Scholar 

  • Stevens PA (1981) Modification and operation of ceramic cup soils solution samples for use in geochemical cycling studies. Institute of Terrestrial Ecology, Occasional Paper No. 8. Bangor, UK.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hershey, A.E. et al. (1997). The Kuparuk River: A Long-Term Study of Biological and Chemical Processes in an Arctic River. In: Milner, A.M., Oswood, M.W. (eds) Freshwaters of Alaska. Ecological Studies, vol 119. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0677-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0677-4_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6866-6

  • Online ISBN: 978-1-4612-0677-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics