Skip to main content

The Gurney Model of Explosive Output for Driving Metal

  • Chapter

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

Measures of the output of explosives in most sources are based upon the strength of the shock wave or the chemical energy content of the explosive. These are most commonly the detonation wave velocityDthe detonation pressureP CJor the heat of detonation ΔH dwhich is derived from detonation calorimetry experiments or thermochemical equilibrium computations. These quantities in themselves provide a correct understanding of the relative output of one explosive in comparison to another (although density is also a factor), but they do not provide a direct measure of how fast an explosive can drive metal or other materials, which is the subject of interest in many applications and safety considerations. In this chapter we shall present a measure of explosive output which does permit the estimation of the velocity or impulse imparted to drive materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aziz, A.K., Hurwitz, H., and Sternberg, H.M. (1961). Energy transfer to a rigid piston under detonation loading.Phys. Fluids4, 380–384.

    Article  ADS  MATH  Google Scholar 

  • Barut, A.O. and Bartlett, A.A. (1978). Introductory note.Amer. J. Phys. 46, 319.

    Article  Google Scholar 

  • Baum, F.A., Stanyukovich, K., and Shekhter, B.I. (1959).Physics of an Explosionpp. 505–507. Moscow (English translation from Federal Clearinghouse AD 400151).

    Google Scholar 

  • Benham, R.A. (1979). Terminal velocity and rotation rate of a flyer plate propelled by a tube-confined explosive charge.Shock and Vibration Bull. 49, 193–201.

    Google Scholar 

  • Bloom, G., Lee, R., and Von Holle, W. (1989). Thin pulse shock initiation characterization of extrusion-cast explosives. Third Intl. Symp. on Behavior of Media Under High Dynamic PressureLa Grande Motte, France, June.

    Google Scholar 

  • Butz, D.J., Backofen, J.E. Jr., and Petrousky, J.A. (1982). Fragment terminal velocities from low metal to explosive mass ratio symmetric sandwich charges.J. Ballistics6, 1304–1322.

    Google Scholar 

  • Chanteret, P.Y. (1983). An analytical model for metal acceleration by grazing detonation.Proc. Seventh Intl. Symp. on BallisticsThe Hague, Netherlands, April.

    Google Scholar 

  • Chou, P.C., Carleone, J., Hirsch, E., Flis, W.J., and Ciccarelli, R.D. (1981). Improved formulas for velocity, acceleration, and projection angle of explosively driven liners.Proc. 6th Intl. Symp. on BallisticsOrlando, FL. Also inPropellants, Explosives, and Pyrotechnics8 (1983), 175–183.

    Google Scholar 

  • Condon, E.U. (1978). Tunneling How it all started.Amer. J. Phys. 46, 319–323.

    Article  ADS  Google Scholar 

  • Cooper, P.W. (1996).Basics of Explosives Engineering. VCH, New York.

    Google Scholar 

  • Defourneaux, M. and Jacques, L. (1970). Explosive deflection of a liner as a diagnostic of detonation flows.Proc. Fifth Symp. (Intl.) on DetonationONR ACR-184, pp. 457–466, August.

    Google Scholar 

  • Dobratz, B.M. and Crawford, P.C. (1985).LLNL Explosives Handbook. Properties of Chemical Explosives and Explosive Simulants. Lawrence Livermore National Laboratory Report UCRL-52997 Change 2, January.

    Google Scholar 

  • Fickett, W. and Davis, W.C. (1979).Detonation. University of California Press, Berkeley, CA, pp. 35–38.

    Google Scholar 

  • Flis, W.J. (1994). A Lagrangian approach to modeling the acceleration of metal by explosives.Developments in Theoretical and Applied MechanicsVol. XVII, pp. 190–203.

    Google Scholar 

  • Gittings, E.F. (1965). Initiation of a solid explosive by a short-duration shock.Proc. Fourth Symp. (Intl.) on Detonation. ONR ACR-126, pp. 373–380, October.

    Google Scholar 

  • Gurney, R.W. (1943). The initial velocities of fragments from bombs, shells, and grenades. Army Ballistic Research Laboratory Report BRL 405.

    Google Scholar 

  • Hardesty, D.R. and Kennedy, J.E. (1977). Thermochemical estimation of explosive energy output.Combust. Flame28, 45–59.

    Article  Google Scholar 

  • Hayes, D.B. (1977). Optimizing the initiation of detonation by flying plates. Sandia National Laboratories Report SAND 77–0268, Albuquerque, NM.

    Google Scholar 

  • Henry, I.G. (1967). The Gurney formula and related approximations for high-explosive deployment of fragments. AD813398, Hughes Aircraft Co. Report PUB-189.

    Google Scholar 

  • Hirsch, E. (1986). Simplified and extended Gurney formulas for imploding cylinders and spheres.Propellants, Explosives, and Pyrotechnics 116–9.

    Article  Google Scholar 

  • Hoskin, N.E., Allan, J.W.S., Bailey, W.A., Lethaby, J.W., and Skidmore, I.C. (1965). The motion of plates and cylinders driven by detonation waves at tangential incidence.Proc. Fourth Symp. (Intl.) on Detonation. ONR ACR-126, pp. 14–26, October.

    Google Scholar 

  • Jones, G.E., Kennedy, J.E., and Bertholf, L.D. (1980). Ballistic calculations of R.W. Gurney.Amer J. Phys. 48, 264–269.

    Article  ADS  Google Scholar 

  • Kamlet, M.J. and Finger, M. (1979). An alternative method for calculating Gurney velocities.Combust. Flame34, 213–214.

    Article  Google Scholar 

  • Kamlet, M.J. and Jacobs, S.J. (1968). Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O explosives.J. Chem. Phys. 48, 23–35.

    Article  ADS  Google Scholar 

  • Kennedy, J.E. (1970). Gurney energy of explosives: Estimation of the velocity and impulse imparted to driven metal. Sandia National Laboratories Report SCRR-70–90, Albuquerque, NM, December.

    Book  Google Scholar 

  • Kennedy, J.E., Cherry, C.R., Cherry, C.R. Jr., Warnes, R.H., and Fischer, S.H. (1996). Momentum transfer in indirect explosive drive.Proc. 22nd Intl. Pyrotechnics SeminarFort Collins, CO. Published by IIT Research Institute, Chicago, July.

    Google Scholar 

  • Kennedy, J.E. and Chou, T.S. (1990). Effects of gaps in explosive/metal systems. Presented at14th Intl. Pyrotechnics SeminarBoulder, CO (unpublished), July.

    Google Scholar 

  • Kennedy, J.E. and Schwarz, A.C. (1974). Detonation transfer by flyer plate impact.Proc. Eighth Symposium on Explosives and Pyrotechnics. Franklin Institute, Philadelphia, PA. Also Sandia National Laboratories Report SLA 74–5073, Albuquerque, NM.

    Google Scholar 

  • Kury, J.W., Hornig, H.C., Lee, E.L., McDonnel, J.L., Ornellas, D.L., Finger, M., Strange, F.M., and Wilkins, M.L. (1965). Metal acceleration by chemical explosives.Proc. Fourth Symp. (Intl.) on Detonation. ONR ACR-126, pp. 3–13, October.

    Google Scholar 

  • Lawrence, R.J. and Trott, W.M. (1993). Theoretical analysis of a pulsed-laser-driven hypervelocity flyer launcher.Internal. J. Impact Engng. 14439–449.

    Article  Google Scholar 

  • Lee, E.L. and Pfeifer, H. (1969). Velocities of fragments from exploding metal cylinders. Lawrence Livermore National Laboratory Report UCRL 50545, January.

    Google Scholar 

  • Lieberman, M.L. and Haskell, K.H. (1978). Pyrotechnic output of TiHx/KClO4 actuators from velocity measurements.Proc. 6th Intl. Pyrotechnics SeminarEstes Park, CO. Published by IIT Research Institute, Chicago, July.

    Google Scholar 

  • Ornellas, D.L. (1968). The heat and products of detonation of HMX, TNT, NM, and FEFO.J. Phys. Chem., 72, 2390–2394. Also Private communication (1970).

    Article  Google Scholar 

  • Ornellas, D.L. and Stroud, J.R. (1988). Flying-plate detonator using a high-density high explosive. U.S. Patent 4778913.

    Google Scholar 

  • Paisley, D.L., Warnes, R.H., and Kopp, R.A. (1991). Laser-driven flat plate impacts to 100 GPa with sub-nanosecond pulse duration and resolution for material property studies.Shock Compression in Condensed Matter. Proc. APS Topical ConferenceWilliamsburg, VA, pp. 825–828.

    Google Scholar 

  • Roth, J. (1971). Private communication.

    Google Scholar 

  • Taylor, G.I. (1941). Analysis of the explosion of a long cylindrical bomb detonated at one end. InScientific Papers of G.I. TaylorVol. III (G.K. Batchelor, ed.). Cambridge University Press, Cambridge, 1963, pp. 277–286.

    Google Scholar 

  • Tucker, T.J. and Stanton, P.L. (1975). Electrical Gurney energy: A new concept in modeling of energy transfer from electrically exploded conductors. Sandia National Laboratories Report SAND 75–0244, Albuquerque, NM.

    Google Scholar 

  • Walker, F.E. and Wasley, R.J. (1969). Critical energy for shock initiation of heterogeneous explosives.Explosivstoffe17, 9.

    Google Scholar 

  • Walters, W.P. and Zukas, J.A. (1989).Fundamentals of Shaped Charges. Wiley, New York, p. 51.

    Google Scholar 

  • Warnes, R.H., Paisley, D.L., and Tonks, D.L. (1995). Hugoniot and spall data from the laser-driven miniflyer.Shock Compression of Condensed Matter. Proc. APS Topical ConferenceSeattle, WA, August, pp. 495–498AIP Conference Proc. 370, Part 1 (S.C. Schmidt and W.C. Tao, eds.).

    Google Scholar 

  • Weinland, C.E. (1969). A scaling law for fragmenting cylindrical warheads. NWC TP 4735, April.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kennedy, J.E. (1998). The Gurney Model of Explosive Output for Driving Metal. In: Zukas, J.A., Walters, W.P. (eds) Explosive Effects and Applications. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0589-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0589-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95558-2

  • Online ISBN: 978-1-4612-0589-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics