Advertisement

Reduced-Order Modeling Techniques Based on Krylov Subspaces and Their Use in Circuit Simulation

  • Roland W. Freund

Abstract

In recent years reduced-order modeling techniques based on Krylov-subspace iterations especially the Lanczos algorithm and the Arnoldi process have become popular tools to tackle the large-scale time-invariant linear dynamical systems that arise in the simulation of electronic circuits. This chapter reviews the main ideas of reduced-order modeling techniques based on Krylov subspaces and describes their use in circuit simulation.

Keywords

Krylov Subspace Circuit Simulation Linear Dynamical System Lanczos Algorithm Pade Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. J. Alexandro, Jr. Stable partial Padé approximations for reduced-order transfer functions.IEEE Trans. Automat. Control, 29:159–162, 1984.MATHCrossRefGoogle Scholar
  2. [2]
    J. I. Aliaga, D. L. Boley, R. W. Freund, and V. Hernández. A Lanczos-type algorithm for multiple starting vectors. Numerical Analysis Manuscript No. 96–18, Bell Laboratories, Murray Hill, NJ, 1996. Also available on-line fromhttp://www.cm.bell-labs.com/cs/doc/96 . Google Scholar
  3. [3]
    D. F. Anastasakis, N. Gopal, and L. T. Pillage. Enhancing the stability of asymptotic waveform evaluation for digital interconnect circuit applications.IEEE Trans. Computer-Aided Design, 13:729–736, 1994.CrossRefGoogle Scholar
  4. [4]
    B. D. O. Anderson and S. Vongpanitlerd.Network Analysis and Synthesis.Prentice-Hall, Englewood Cliffs, NJ, 1973.Google Scholar
  5. [5]
    W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem.Quart. Appl. Math., 9:17–29, 1951.MathSciNetMATHGoogle Scholar
  6. [6]
    Z. Bai. P. Feldmann, and R. W. Freund. Stable and passive reduced-order models based on partial Padé approximation via the Lanczos process. Numerical Analysis Manuscript No. 97–3–10, Bell Laboratories, Murray Hill, NJ, 1997. Also available on-line fromhttp://www.cm.bell-labs.com/cs/doc/97 . Google Scholar
  7. [7]
    Z. Bai. P. Feldmann, and R. W. Freund. How to make theoretically passive reduced-order models passive in practice. InProc. IEEE 1998 Custom Integrated Circuits Conference, pages 207–210. IEEE, 1998.Google Scholar
  8. [8]
    Z. Bai and R. W. Freund. Eigenvalue-based characterization and test for positive realness of transfer functions. Numerical Analysis Manuscript, Bell Laboratories, Murray Hill, NJ, 1999.Google Scholar
  9. [9]
    Z. Bai and R. W. Freund. A band symmetric Lanczos process based on coupled recurrences with applications in model-order reduction. Numerical Analysis Manuscript, Bell Laboratories, Murray Hill, NJ, 1999.Google Scholar
  10. [10]
    Z. Bai and Q. Ye. Error estimation of the Padé approximation of transfer functions via the Lanczos process. Manuscript, 1997.Google Scholar
  11. [11]
    G. A. Baker Jr. and P. Graves-Morris.Padé Approximants, 2nd Edition. Cambridge University Press, New York, NY, 1996.CrossRefGoogle Scholar
  12. [12]
    D. L. Boley. Krylov space methods on state-space control models.Circuits Systems Signal Process., 13:733–758, 1994.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    D. L. Boley and G. H. Golub. The nonsymmetric Lanczos algorithm and controllability.Systems Control Lett.,16:97–105, 1991.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    O. H. Bosgra. On parametrizations for the minimal realization problem.Systems Control Lett.,3:181–187, 1983.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    O. H. Bosgra and A. J. J. Van der Weiden. Input-out invariants for linear multivariable systems.IEEE Trans. Automat. Control, 25:2036, 1980.CrossRefGoogle Scholar
  16. [16]
    J. E. Bracken. Padé approximation of linear circuit responses via passive circuit synthesis. Manuscript, 1995.Google Scholar
  17. [17]
    C. Brezinski. Partial Padé approximation.J. Approx. Theory, 54:210–233, 1988.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    A. Bultheel and M. Van Barel. Padé techniques for model reduction in linear system theory: a survey.J. Comput. Appl. Math., 14:401–438, 1986.MathSciNetCrossRefGoogle Scholar
  19. [19]
    P. K. Chan. Comments on “Asymptotic waveform evaluation for timing analysis”.IEEE Trans. Computer-Aided Design, 10:1078–1079, 1991.CrossRefGoogle Scholar
  20. [20]
    R. H. Chan and M. K. Ng. Conjugate gradient methods for Toeplitz systems.SIAM Rev., 38:427–482, 1996.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    M. Celik and A. C. Cangellaris. Simulation of dispersive multiconductor transmission lines by Padé approximation via the Lanczos process.IEEE Trans. Microwave Theory Tech., 44:2525–2535, 1996.CrossRefGoogle Scholar
  22. [22]
    M. Celik and A. C. Cangellaris. Simulation of multiconductor transmission lines using Krylov subspace order-reduction techniques.IEEE Trans. Computer-Aided Design, 16:485–496, 1997.CrossRefGoogle Scholar
  23. [23]
    M. Celik, O. Ocali, M. A. Tan, and A. Atalar. Pole-zero computation in microwave circuits using multipoint Padé approximation.IEEE Trans. Circuits and Systems—I: Fundamental Theory and Applications, 42:6–13, 1995.CrossRefGoogle Scholar
  24. [24]
    C.-T. Chen.Linear System Theory and Design. Oxford University Press, New York, NY, 1984.Google Scholar
  25. [25]
    E. Chiprout and M. S. Nakhla.Asymptotic Waveform Evaluation.Kluwer Academic Publishers, Norwell, MA, 1994.CrossRefGoogle Scholar
  26. [26]
    R. R. Craig, Jr. and A. L. Hale. Block-Krylov component synthesis method for structural model reduction.J. Guidance Control Dynamics, 11:562–570, 1988.MATHCrossRefGoogle Scholar
  27. [27]
    R. R. Craig, Jr. and T.-J. Su. A review of model reduction methods for structural control design. In C. L. Kirk and J. L. Junkins, editorsDynamics of Flexible Structures in Space, pages 121–134. Computational Mechanics Publications, Southampton, UK, 1990.Google Scholar
  28. [28]
    J. K. Cullum. Arnoldi versus nonsymmetric Lanczos algorithms for solving matrix eigenvalue problems.BIT, 36:470–493, 1996.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    J. K. Cullum and W. E. Donath. A block Lanczos algorithm for computing theqalgebraically largest eigenvalues and a corresponding eigenspace for large, sparse symmetric matrices. InProc. 1974 IEEE Conference on Decision and Control, pages 505–509. IEEE Press, New York, NY, 1974.Google Scholar
  30. [30]
    J. K. Cullum and R. A. Willoughby.Lanczos Algorithms for Large Symmetric Eigenvalue Computations Volume 1 Theory.Birkhäuser, Basel, Switzerland, 1985.Google Scholar
  31. [31]
    J. K. Cullum and R. A. Willoughby.Lanczos Algorithms for Large Symmetric Eigenvalue Computations Volume 2 Programs.Birkhäuser, Basel, Switzerland, 1985.Google Scholar
  32. [32]
    J. K. Cullum and R. A. Willoughby. A practical procedure for computing eigenvalues of large sparse nonsymmetric matrices. In J. K. Cullum and R. A. Willoughby, editorsLarge Scale Eigenvalue Problems, pages 193–240. North-Holland, Amsterdam, The Netherlands, 1986.CrossRefGoogle Scholar
  33. [33]
    L. Dai. Singular Control Systems. Lecture Notes in Control and Information Sciences, vol. 118. Springer-Verlag, Berlin, Germany, 1989.Google Scholar
  34. [34]
    J. Davidse.Analog Electronic Circuit Design. Prentice Hall, New York, NY, 1991.Google Scholar
  35. [35]
    I. S. Duff, A. M. Erisman, and J. K. Reid.Direct Methods for Sparse Matrices.Oxford University Press, Oxford, UK, 1989.Google Scholar
  36. [36]
    A. E. Dunlop, W. J. Evans, and L. A. Rigge. Managing complexity in IC design—past, present, and future.Bell Labs Technical Journal, 2:103–125, 1997.CrossRefGoogle Scholar
  37. [37]
    I. M. Elfadel and D. D. Ling. Zeros and passivity of Arnoldi-reducedorder models for interconnect networks. InProc. 34nd ACM/IEEE Design Automation Conf., pages 28–33. Association for Computing Machinery, Inc., New York, NY, 1997.Google Scholar
  38. [38]
    I. M. Elfadel and D. D. Ling. A block rational Arnoldi algorithm for multipoint passive model-order reduction of multiport RLC networks. InTechnical Digest of the 1997 IEEE/ACM International Conference on Computer-Aided Design, pages 66–71. IEEE Computer Society Press, Los Alamitos, CA, 1997.Google Scholar
  39. [39]
    P. Feldmann and R. W. Freund. Efficient linear circuit analysis by Padé approximation via the Lanczos process. InProceedings of EURO-DAC ‘84 with EURO-VHDL ‘84, pages 170–175. IEEE Computer Society Press, Los Alamitos, CA, 1994.Google Scholar
  40. [40]
    P. Feldmann and R. W. Freund. Efficient linear circuit analysis by Padé approximation via the Lanczos process.IEEE Trans. Computer-Aided Design, 14:639–649, 1995.CrossRefGoogle Scholar
  41. [41]
    P. Feldmann and R. W. Freund. Reduced-order modeling of large linear subcircuits via a block Lanczos algorithm. InProc. 32nd ACM/IEEE Design Automation Conf., pages 474–479. Association for Computing Machinery, Inc., New York, NY, 1995.Google Scholar
  42. [42]
    P. Feldmann and R. W. Freund.Numerical Simulation of Electronic Circuits: State-of-the-Art Techniques and Challenges.Course Notes, 1995. Available on-line from http://www.cm.belllabs.com/who/freund Google Scholar
  43. [43]
    P. Feldmann and R. W. Freund. Interconnect-delay computation and signal-integrity verification using the SyMPVL algorithm. InProc. 1997 European Conference on Circuit Theory and Design, pages 408–413. European Circuit Society, 1997.Google Scholar
  44. [44]
    P. Feldmann and R. W. Freund. Circuit noise evaluation by Padé approximation based model-reduction techniques. InTechnical Digest of the 1997 IEEE/ACM Int. Conf. on Computer-Aided Design, pages 132–138. IEEE Computer Society Press, Los Alamitos, CA, 1997.Google Scholar
  45. [45]
    L. Fortuna, G. Nunnari, and A. Gallo.Model Order Reduction Techniques with Applications in Electrical Engineering.Springer-Verlag, London, UK, 1992.CrossRefGoogle Scholar
  46. [46]
    R. W. Freund. Computation of matrix Padé approximations of transfer functions via a Lanczos-type process. In C. K. Chui and L. L. Schumaker, editorsApproximation Theory VIII Vol. 1: Approximation and Interpolation, pages 215–222. World Scientific Publishing Co., Inc., Singapore, 1995.Google Scholar
  47. [47]
    R. W. Freund. Computing minimal partial realizations via a Lanczostype algorithm for multiple starting vectors. InProc. 36th IEEE Conference on Decision and Control, pages 4394–4399. IEEE, Piscataway, NJ, 1997.CrossRefGoogle Scholar
  48. [48]
    R. W. Freund. Passive reduced-order models for interconnect simulation and their computation via Krylov-subspace algorithms. Numerical Analysis Manuscript No. 98–3–06, Bell Laboratories, Murray Hill, NJ, 1998. Also available on-line from http://www.cm.belllabs.com/cs/doc/98 Google Scholar
  49. [49]
    R. W. Freund. An extension of the Lanczos-Padé connection to the matrix case. Numerical Analysis Manuscript, Bell Laboratories, Murray Hill, NJ, 1999.Google Scholar
  50. [50]
    R. W. Freund and P. Feldmann. Small-signal circuit analysis and sensitivity computations with the PVL algorithm.IEEE Trans. Circuits and Systems—II: Analog and Digital Signal Processing, 43:577–585, 1996.MATHCrossRefGoogle Scholar
  51. [51]
    R. W. Freund and P. Feldmann. Reduced-order modeling of large passive linear circuits by means of the SyPVL algorithm. InTechnical Digest of the 1996 IEEE/ACM Int. Conf. on Computer-Aided Design, pages 280–287. IEEE Computer Society Press, Los Alamitos, CA, 1996.Google Scholar
  52. [52]
    R. W. Freund and P. Feldmann. Reduced-order modeling of large linear passive multi-terminal circuits using matrix-Padé approximation. InProceedings of DATE’98.IEEE Computer Society Press, Los Alamitos, CA, 1998.Google Scholar
  53. [53]
    R. W. Freund, G. H. Golub, and N. M. Nachtigal. Iterative solution of linear systems.Acta Numerica, 1:57–100, 1992.MathSciNetCrossRefGoogle Scholar
  54. [54]
    R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices.SIAM J. Sci. Comput., 14:137–158, 1993.MathSciNetMATHCrossRefGoogle Scholar
  55. [55]
    R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian linear systems.Numer. Math., 60:315–339, 1991.MathSciNetMATHCrossRefGoogle Scholar
  56. [56]
    R. W. Freund and N. M. Nachtigal. An implementation of the QMR method based on coupled two-term recurrences.SIAM J. Sci. Comput., 15:313–337, 1994.MathSciNetMATHCrossRefGoogle Scholar
  57. [57]
    R. W. Freund and N. M. Nachtigal. Software for simplified Lanczos and QMR algorithms.Appl. Numer. Math., 19:319–341, 1995.MathSciNetMATHCrossRefGoogle Scholar
  58. [58]
    R. W. Freund and N. M. Nachtigal. QMRPACK: a package of QMR algorithms.ACM Trans. Math. Software,22:46–77, 1996.MathSciNetMATHCrossRefGoogle Scholar
  59. [59]
    K. Gallivan, E. J. Grimme, and P. Van Dooren. Asymptotic waveform evaluation via a Lanczos method.Appl. Math. Lett., 7:75–80, 1994.MathSciNetMATHCrossRefGoogle Scholar
  60. [60]
    K. Gallivan, E. J. Grimme, and P. Van Dooren. A rational Lanczos algorithm for model reduction.Numer. Algorithms, 12:33–63, 1996.MathSciNetMATHCrossRefGoogle Scholar
  61. [61]
    T. Geerts. Invariant subspaces and invertibility properties for singular systems: the general case.Linear Algebra Appl., 183:61–88, 1993.MathSciNetMATHCrossRefGoogle Scholar
  62. [62]
    K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L∞-error bounds.Internat. J. Control, 39:1115–1193, 1984.MathSciNetMATHCrossRefGoogle Scholar
  63. [63]
    I. Gohberg, M. A. Kaashoek, and L. Lerer. On minimality in the partial realization problem.Systems Control Lett.,9:97–104, 1987.MathSciNetMATHCrossRefGoogle Scholar
  64. [64]
    G. H. Golub and J. Kautsky. Calculation of Gauss quadrature with multiple free and fix knots.Numer. Math., 41:147–163, 1983.MathSciNetMATHCrossRefGoogle Scholar
  65. [65]
    G. H. Golub and C. F. Van LoanMatrix Computations, 3rd Edition. The Johns Hopkins University Press, Baltimore, MD, 1996.MATHGoogle Scholar
  66. [66]
    W. B. Gragg. Matrix interpretations and applications of the continued fraction algorithm.Rocky Mountain J. Math., 4:213–225, 1974.MathSciNetMATHCrossRefGoogle Scholar
  67. [67]
    W. B. Gragg and A. Lindquist. On the partial realization problem.Linear Algebra Appl.,50:277–319, 1983.MathSciNetMATHCrossRefGoogle Scholar
  68. [68]
    E. J. Grimme, D. C. Sorensen, and P. Van Dooren. Model reduction of state space systems via an implicitly restarted Lanczos method.Numer. Algorithms, 12:1–31, 1996.MathSciNetMATHCrossRefGoogle Scholar
  69. [69]
    X. Huang. Padé approximation of linear(ized) circuit responses. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, 1990.Google Scholar
  70. [70]
    I. M. Jaimoukha. A general minimal residual Krylov subspace method for large-scale model reduction.IEEE Trans. Automat. Control, 42:1422–1427, 1997.MathSciNetMATHCrossRefGoogle Scholar
  71. [71]
    I. M. Jaimoukha and E. M. Kasenally. Oblique projection methods for large scale model reduction.SIAM J. Matrix Anal. Appl., 16:602–627, 1995.MathSciNetMATHCrossRefGoogle Scholar
  72. [72]
    I. M. Jaimoukha and E. M. Kasenally. Implicitly restarted Krylov subspace methods for stable partial realizations.SIAM J. Matrix Anal. Appl., 18:633–652, 1997.MathSciNetMATHCrossRefGoogle Scholar
  73. [73]
    T. Kailath.Linear Systems.Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980.Google Scholar
  74. [74]
    J. Kautsky and S. Elhay. Gauss quadratures and Jacobi matrices for weight functions not of one sign.Math. Comp.,43:543–550, 1984.MathSciNetMATHGoogle Scholar
  75. [75]
    K. J. Kerns, I. L. Wemple, and A. T. Yang. Stable and efficient reduction of substrate model networks using congruence transformations. InTechnical Digest of the 1995 IEEE/ACM International Conference on Computer-Aided Design, pages 207–214. IEEE Computer Society Press, Los Alamitos, CA, 1995.Google Scholar
  76. [76]
    K. J. Kerns and A. T. Yang. Preservation of passivity during RLC network reduction via split congruence transformations. InProc. 84nd ACM/IEEE Design Automation Conf., pages 34–39. Association for Computing Machinery, Inc., New York, NY, 1997.Google Scholar
  77. [77]
    K. J. Kerns and A. T. Yang. Stable and efficient reduction of large, multiport RC networks by pole analysis via congruence transformations.IEEE Trans. Computer-Aided Design, 16:734–744, 1997.CrossRefGoogle Scholar
  78. [78]
    H. M. Kim and R. R. Craig, Jr. Structural dynamics analysis using an unsymmetric block Lanczos algorithm.Internat. J. Numer. Methods Engrg., 26:2305–2318, 1988.MATHCrossRefGoogle Scholar
  79. [79]
    H. M. Kim and R. R. Craig, Jr. Computational enhancement of an unsymmetric block Lanczos algorithm.Internat. J. Numer. Methods Engrg., 30:1083–1089, 1990.MathSciNetMATHCrossRefGoogle Scholar
  80. [80]
    S.-Y. Kim, N. Gopal, and L. T. Pillage. Time-domain macromodels for VLSI interconnect analysis.IEEE Trans. Computer-Aided Design, 13:1257–1270, 1994.CrossRefGoogle Scholar
  81. [81]
    C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators.J. Res. Nat. Bur. Standards, 45:255–282, 1950.MathSciNetCrossRefGoogle Scholar
  82. [82]
    C. Lanczos. Solution of systems of linear equations by minimized iterations.J. Res. Nat. Bur. Standards, 49:33–53, 1952.MathSciNetCrossRefGoogle Scholar
  83. [83]
    V. L. Mehrmann. The Autonomous Linear Quadratic Control Problem. Lecture Notes in Control and Information Sciences, vol. 163. Springer-Verlag, Berlin, Germany, 1991.CrossRefGoogle Scholar
  84. [84]
    H.-D. Meyer and S. Pal. A band-Lanczos method for computing matrix elements of a resolvent.J. Chem. Phys.91:6195–6204, 1989.MathSciNetCrossRefGoogle Scholar
  85. [85]
    B. C. Moore. Principal component analysis in linear systems: controllability, observability, and model reduction.IEEE Trans. Automat. Control, 26:17–31, 1981.MathSciNetMATHCrossRefGoogle Scholar
  86. [86]
    T. V. Nguyen and J. Li. Multipoint Padé approximation using a rational block Lanczos algorithm. InTechnical Digest of the 1997 IEEE/ACM International Conference on Computer-Aided Design, pages 72–75. IEEE Computer Society Press, Los Alamitos, CA, 1997.Google Scholar
  87. [87]
    A. A. Nikishin and A. Yu. Yeremin. Variable block CG algorithms for solving large sparse symmetric positive definite linear systems on parallel computers, I: general iterative scheme.SIAM J. Matrix Anal. Appl., 16:1135–1153, 1995.MathSciNetMATHCrossRefGoogle Scholar
  88. [88]
    A. Odabasioglu. Provably passive RLC circuit reduction. M.S. thesis, Carnegie Mellon University, Pittsburgh, PA, 1996.Google Scholar
  89. [89]
    A. Odabasioglu, M. Celik, and L. T. Pileggi. PRIMA: passive reduced-order interconnect macromodeling algorithm. InTechnical Digest of the 1997 IEEE/ACM International Conference on Computer-Aided Design, pages 58–65. IEEE Computer Society Press, Los Alamitos, CA, 1997.Google Scholar
  90. [90]
    D. P. O’leary.The block conjugate gradient algorithm and related methods.Linear Algebra Appl., 29:293–322, 1980.MathSciNetMATHCrossRefGoogle Scholar
  91. [91]
    B. N. Parlett, D. R. Taylor, and Z. A. Liu. A look-ahead Lanczos algorithm for unsymmetric matrices.Math. Comp.,44:105–124, 1985.MathSciNetMATHGoogle Scholar
  92. [92]
    L. T. Pileggi. Coping with RC(L) interconnect design headaches. InTechnical Digest of the 1995 IEEE/ACM International Conference on Computer-Aided Design, pages 246–253. IEEE Computer Society Press, Los Alamitos, CA, 1995.Google Scholar
  93. [93]
    L. T. Pillage and R. A. Rohrer. Asymptotic waveform evaluation for timing analysis.IEEE Trans. Computer-Aided Design, 9:352–366, 1990.CrossRefGoogle Scholar
  94. [94]
    V. Raghavan, J. E. Bracken, and R. A. Rohrer AWESpice: A general tool for the accurate and efficient simulation of interconnect problems. InProc. 29th ACM/IEEE Design Automation Conf., pages 87–92. Association for Computing Machinery, Inc., New York, NY, 1992.CrossRefGoogle Scholar
  95. [95]
    V. Raghavan, R. A. Rohrer, L. T. Pillage, J. Y. Lee, J. E. Bracken, and M. M. Alaybeyi. AWE—inspired. InProc. IEEE Custom Integrated Circuits Conference, 1993.Google Scholar
  96. [96]
    C. L. Ratzlaff and L. T. Pillage. RICE: rapid interconnect circuit evaluation using AWE.IEEE Trans. Computer-Aided Design, 13:763–776, 1994.CrossRefGoogle Scholar
  97. [97]
    R. A. Rohrer, L. Nagel, R. Meyer, and L. Weber. Computationally efficient electronic-circuit noise calculations.IEEE J. Solid-State Circuits, 6:204–213, 1971.CrossRefGoogle Scholar
  98. [98]
    A. E. Ruehli. Equivalent circuit models for three-dimensional multiconductor systems.IEEE Trans. Microwave Theory Tech., 22:216–221, 1974.CrossRefGoogle Scholar
  99. [99]
    A. E. Ruehli, editor.Circuit Analysis Simulation and Design Part 1: General Aspects of Circuit Analysis and Design.North-Holland, Amsterdam, The Netherlands, 1986.Google Scholar
  100. [100]
    A. E. Ruehli, editor.Circuit Analysis Simulation and Design Part 2: VLSI Circuit Analysis and Simulation.North-Holland, Amsterdam, The Netherlands, 1987.Google Scholar
  101. [101]
    A. Ruhe. Implementation aspects of band Lanczos algorithms for computation of eigenvalues of large sparse symmetric matrices.Math. Comp., 33:680–687, 1979.MathSciNetMATHCrossRefGoogle Scholar
  102. [102]
    A. Ruhe. The two-sided Arnoldi algorithm for nonsymmetric eigen-value problems. In B. Kágström and A. Ruhe, editorsProceedings Pite Haysbad, Lecture Notes in Mathematics, vol. 973, pages 104–120. Springer-Verlag, Berlin, Germany, 1983Google Scholar
  103. [103]
    A. Ruhe. Rational Krylov sequence methods for eigenvalue computation.Linear Algebra Appl., 58:391–405, 1984.MathSciNetMATHCrossRefGoogle Scholar
  104. [104]
    A. Ruhe. Rational Krylov algorithms for nonsymmetric eigenvalue problems. II: matrix pairs.Linear Algebra Appl., 197/198:283–295, 1994.MathSciNetCrossRefGoogle Scholar
  105. [105]
    Y. Saad.Numerical Methods for Large Eigenvalue Problems.Halstead Press, New York, NY, 1992.Google Scholar
  106. [106]
    Y. Saad.Iterative Methods for Sparse Linear Systems.PWS Publishing Company, Boston, MA, 1996.Google Scholar
  107. [107]
    Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems.SIAM J. Sci. Statist. Comput., 7:856–869, 1986.MathSciNetMATHCrossRefGoogle Scholar
  108. [108]
    A. L. Sangiovanni-Vincentelli. Circuit simulation. In P. Antognetti, D. O. Pederson, and D. de Man, editorsComputer Design Aids for VLSI Circuits, pages 19–112. Sijthoff & Noordhoff International Publishers B.V., Alphen aan den Rijn, The Netherlands, 1981.Google Scholar
  109. [109]
    Y. Shamash. Stable reduced-order models using Padé-type approximations.IEEE Trans. Automat. Control, 19:615–616, 1974.MATHCrossRefGoogle Scholar
  110. [110]
    Y. Shamash. Model reduction using the Routh stability criterion and the Padé approximation technique.Internat. J. Control, 21:475–484, 1975.MathSciNetMATHCrossRefGoogle Scholar
  111. [111]
    L. M. Silveira, M. Kamon, I. Elfadel, and J. White. A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of RLC circuits. InTechnical Digest of the 1996 IEEE/ACM International Conference on Computer-Aided Design, pages 288–294. IEEE Computer Society Press, Los Alamitos, CA, 1996.Google Scholar
  112. [112]
    L. M. Silveira, M. Kamon, and J. White. Efficient reduced-order modeling of frequency-dependent coupling inductances associated with 3-D interconnect structures. InProc. 1995 European Design and Test Conference, pages 534–538. IEEE Computer Society Press, Los Alamitos, CA, 1995.CrossRefGoogle Scholar
  113. [113]
    T.-J. Su. A decentralized linear quadratic control design method for flexible structures. Ph.D. thesis, The University of Texas at Austin, Austin, TX, 1989.Google Scholar
  114. [114]
    T.-J. Su and R. R. Craig, Jr. Model reduction and control of flexible structures using Krylov vectors.J. Guidance Control Dynamics, 14:260–267, 1991.CrossRefGoogle Scholar
  115. [115]
    A. J. Tether. Construction of minimal linear state-variable models from finite input-output data.IEEE Trans. Automat. Control, 15:427–436,1970.MathSciNetCrossRefGoogle Scholar
  116. [116]
    N. P. van der Meijs and T. Smedes. Accurate interconnect modeling: towards multi-million transistor chips as microwave circuits. InTechnical Digest of the 1996 IEEE/ACM Int. Conf. on Computer-Aided Design, pages 244–251. IEEE Computer Society Press, Los Alamitos, CA, 1996.Google Scholar
  117. [117]
    H. A. van der Vorst and G. H. Golub. 150 years old and still alive: eigenproblems. In I. S. Duff and G. A. Watson, editorsThe State of the Art in Numerical Analysis, pages 93–119. Clarendon Press, Oxford, UK, 1997.Google Scholar
  118. [118]
    A. J. J. van der Weiden and O. H. Bosgra. The determination of structural properties of a linear multivariable system by operations of system similarity.Internat. J. Control, 32:489–537, 1980.MathSciNetMATHCrossRefGoogle Scholar
  119. [119]
    A. van der Ziel.Noise in Solid State Devices and Circuits.John Wiley & Sons, Inc., New York, NY, 1986.Google Scholar
  120. [120]
    C. de Villemagne and R. E. Skelton. Model reductions using a projection formulation.Internat. J. Control, 46:2141–2169, 1987.MathSciNetCrossRefGoogle Scholar
  121. [121]
    J. Vlach and K. Singhal.Computer Methods for Circuit Analysis and Design, 2. Van Nostrand Reinhold, New York, NY, 1993.Google Scholar
  122. [122]
    M. R. Wohlers.Lumped and Distributed Passive Networks.Academic Press, New York, NY, 1969.Google Scholar
  123. [123]
    G.-L. Xu and A. Bultheel Matrix Padé approximation: Definitions and properties.Linear Algebra Appl.,137/138:67–136, 1990.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Roland W. Freund

There are no affiliations available

Personalised recommendations