An Overview of Wavelet Regularization

  • Yazhen Wang
Part of the Lecture Notes in Statistics book series (LNS, volume 141)

Abstract

This chapter reviews the construction of wavelet thresholding (shrinkage) estimators by regularization. Both penalty and maximum a posterori approaches are presented and their relation is discussed.

Keywords

Shrinkage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, S. and Donoho, S. (1995). Atomic decomposition by basis pursuit. Manuscript.Google Scholar
  2. Donoho, D. L. and Johnstone, I. M. (1994). Ideal denoising in an orthonormal basis chosen from a library of bases. Comptes Rendus Acad. Sci. Paris A 319, 1317–1322.MathSciNetMATHGoogle Scholar
  3. Donoho, D. L. and Johnstone, I. M. (1998). Minimax estimation via Wavelets shrinkage. Ann. Statist. 26, 879–921.MathSciNetMATHCrossRefGoogle Scholar
  4. Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1995). Wavelet shrinkage: Asymptopia ? (with discussion). J. Roy. Statist. Soc. B 57 301–369.MathSciNetMATHGoogle Scholar
  5. Leporini, D. and Pesquet, J.C. (1998a). Multiscale regularization in Besov Spaces. Manuscript.Google Scholar
  6. Leporini, D. and Pesquet, J.C. (1998b). Wavelet thresholding for some classes of non-Gaussian noise. Manuscript.Google Scholar
  7. Vidakovic, B. (1999). Statistical Modeling by Wavelets. Wiley, N.Y., 381pp.MATHCrossRefGoogle Scholar
  8. Wahba, G. (1990). Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia.MATHCrossRefGoogle Scholar
  9. Wang, Y. (1997). Fractal function estimation via wavelet shrinkage. J. Roy. Statist. Soc. B. 59, 603–613.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Yazhen Wang

There are no affiliations available

Personalised recommendations