Spectral View of Wavelets and Nonlinear Regression

  • J. S. Marron
Part of the Lecture Notes in Statistics book series (LNS, volume 141)


This chapter reviews one of the most widespread uses of wavelets in statistics: nonlinear nonparametric regression. Simple insight into the utility and power of the wavelet approach comes from a discrete spectral analysis point of view. Some of the ideas here are the same as some introduced in Chapter 1, but the different viewpoint is intended to give additional insights.


Covariance Shrinkage Pyramid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benedetto, J. J. and Frazier, M. W. (1994) Wavelets: Mathematics and Applications, CRC Press, Bocan Raton, Florida.MATHGoogle Scholar
  2. Bloomfield, P. (1976) Fourier analysis of time series, an introduction, Wiley, New York.MATHGoogle Scholar
  3. Daubechies, I. (1992) Ten Lectures on Wavelets,. SIAM, Philadelphia.MATHCrossRefGoogle Scholar
  4. Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via Wavelet shrinkage, J. Amer. Statist. Assoc., 90, 1200–1224.MathSciNetMATHCrossRefGoogle Scholar
  5. Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1995). Wavelet shrinkage: Asymptopia? Jour. Roy. Statist. Soc. Ser. B, 57, 301–369.MathSciNetMATHGoogle Scholar
  6. Marron, J. S., Adak, S., Johnstone, I. M, Neumann, M. and Patil, P. (1998) Exact risk analysis of wavelet regression, Journal of Computational and Graphical Statistics, 7 278–309.Google Scholar
  7. Nason, G.P., Sapatinas, T. and Sawczenko, A. (1997) Statistical modelling of time series using non-decimated wavelet representations, Technical Report, University of Bristol.Google Scholar
  8. Strang, G. (1989) Wavelets and dilation equations: a brief introduction, SIAM Review, 31, 614–627.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • J. S. Marron

There are no affiliations available

Personalised recommendations