Skip to main content

Abstract

The ability of humans to maintain their normal physiological functions involves many complex interwoven biological pathways. Part of this homeostasis involves normal turnover of tissues found throughout the body. In addition, it involves the ability of mammalian tissues to repair themselves after injury. Without the ability of tissues to repair themselves, we would be unable to withstand the trauma of daily life or the invasion of bacteria, fungi, and viruses. In addition, the ability to heal after chemical, mechanical, electrical, and biological trauma makes life as we know it possible. In this chapter, we will discuss how healing occurs and what processes are involved. As we discuss below, healing is a multistep process that involves biological components found in blood and elements that make up extracellular matrix. These elements are components of systems that prevent excessive bleeding, remove exogenous debris, promote new tissue deposition, and allow resumption of normal physiological processes. The scope of this chapter is to discuss the relationship between these components and systems that promote homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

  • Abbas A.K., Lichtman A.H., and Pober J.S., Cellular and Molecular Immunology, W.B. Saunders, Philadelphia, chapters 2, 3, 5, 7, 11, and 13, 1991.

    Google Scholar 

  • Barlow Y. and Willoughby J., Pathophysiology of Soft Tissue Repair, Br. Med. Bull. 48, 698, 1992.

    PubMed  CAS  Google Scholar 

  • Beutler B. and van Huffel C., Unraveling Function in the TNF Ligand and Receptor Families, Science 264, 667, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Calandruccio R.A. and Gilmer W.S., Proliferation, Regeneration, and Repair of Articular Cartilage of Immature Animals, J. Bone Joint Surg. 44A, 431, 1962.

    Google Scholar 

  • Campbell C.J., The Healing of Cartilage Defects. Clin. Orthop. 64, 45, 1969.

    Google Scholar 

  • Clark J.M., The Organization of Collagen Fibrils in the Superficial Zones of Articular Cartilage, J. Anat. 171, 117, 1990.

    PubMed  CAS  Google Scholar 

  • Convery F.R., Akeson W.H., and Keown G.H., The Repair of Large Osteochondral Defects: An Experimental Study in Horses, Clin. Orthop. 82, 253, 1972.

    PubMed  CAS  Google Scholar 

  • DePalma A.F., McKeever C.D., and Subin D.K., Process of Repair of Articular Cartilage Demonstrated by Histology and Autoradiography With Tritiated Thymidine, Clin. Orthop. 48, 229, 1966.

    PubMed  CAS  Google Scholar 

  • Elner S.G. and Elner V.M., The Integrin Superfamily and the Eye, Invest. Ophthalmol. Vis. Sci. 37, 696, 1996.

    PubMed  CAS  Google Scholar 

  • Kehrl J.H., Alvarez-Mon M., Delsing G.A., and Fauci A.S., Lymphotoxin Is an Important T Cell-Derived Growth Factor for Human B Cells, Science 238, 1144, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Grande D.A., Singh I.J., and Pugh J., Healing of Experimentally Produced Lesions in Articular Cartilage Following Chondrocyte Transplantation, Anat. Rec. 218, 142, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Horton W.A., Morphology of Connective Tissue: Cartilage, in Connective Tissue and Its Heritable Disorders, Wiley-Liss, New York, p. 73, 1993.

    Google Scholar 

  • Henney C.S., The Interleukins as Lymphocyte Growth Factors, Transplant. Proc. 21, 22, 1989.

    PubMed  CAS  Google Scholar 

  • Jerusalem C., Hess F., and Werner H., The Formation of a Neo-Intima in Textile Prostheses Implanted in the Aorta of Rats and Dogs, Cell Tissue Res. 248, 505, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Nakahara H., Goldberg V.M., and Caplan A.I., Culture-Expanded Human Periosteal-Derived Cells Exhibit Osteochondral Potential In Vivo, J. Orthop. Res. 9, 465, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Pierce G.F., Macrophages: Important Physiological and Pathologic Sources of Polypeptide Growth Factors, Am. J. Respir. Cell Mol. Biol. 2, 233, 1990.

    PubMed  CAS  Google Scholar 

  • Robinson P.D., Articular Cartilage of the Temporomandibular Joint: Can It Regenerate? Ann. R. Coll. Surg. Engl. 75, 2316, 1993.

    Google Scholar 

  • Ruoslahti E., Integrins, J. Clin. Invest. 87, 1, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson B., Dahlen S.-E., Lindgren J.A., Rouzer C.A., and Serhan C.N., Leukotrienes and Lipoxins: Structures, Biosynthesis, and Biological Effects, Science 237, 1171, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro E, Koide S., and Glimcher M.J., Cell Origin and Differentiation in the Repair of Full-Thickness Defects of Articular Cartilage, J. Bone Joint Surg. 75A, 532, 1993.

    Google Scholar 

  • Silver F.H and Glasgold A.I., Cartilage Wound Healing: An Overview, Otolaryngol. Clin. North Am. 28, 847, 1995.

    CAS  Google Scholar 

  • Silver F.H. and Maas C.S., Biology of Synthetic Facial Implant Materials, Facial Plast. Surg. Clin. North Am. 2, 241, 1994.

    Google Scholar 

  • Silver F.H. and Parsons J.R., Repair of Skin, Bone and Cartilage, in Applications of Biomaterials in Facial Plastic Surgery, edited by A.I. Glasgold and F.H. Silver, CRC Press, Boca Raton, FL, p. 65, 1991.

    Google Scholar 

  • Sporn M.B. and Roberts A.B., Peptide Growth Factors and Inflammation, Tissue Repair, and Cancer, J. Clin. Invest. 78, 329, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Tiggs M.A., Casey L., and Kosland M.E., Mechanism of Interleukin-2 Signaling: Mediation of Different Outcomes by a Single Receptor and Transduction Pathway, Science 243, 781, 1989.

    Article  Google Scholar 

  • Van Brunt J. and Klausner A., Growth Factors Speed Wound Healing, Bio/ Technology 6, 25, 1988.

    Google Scholar 

  • Weiss C, Rosenberg L., and Helfet A.J., An Ultrastructural Study of Normal Young Adult Human Articular Cartilage, J. Bone Joint Surg. 50A: 663, 1968.

    Google Scholar 

  • Wesolow A., The Healing of Arterial Prostheses: The State of the Art, Thorac. Cardiovasc. Surg. 30, 196, 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Silver, F.H., Christiansen, D.L. (1999). Wound Healing. In: Biomaterials Science and Biocompatibility. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0557-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0557-9_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6816-1

  • Online ISBN: 978-1-4612-0557-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics