Skip to main content

Assembly of Biological Macromolecules

  • Chapter
  • 430 Accesses

Abstract

The study of animal tissues is complex because water, ions, cells, macro-molecules, tissues, and organs exist in equilibrium. From a structural point of view, biological tissues contain highly ordered arrays of macromolecules. One might wonder why biological structures need to be made up of highly ordered arrays of proteins, polysaccharides, and lipids. The reason is that individual polymer molecules cannot sustain the weight of gravity without rearranging. For example, if your skin were made of just collagen molecules without being cross-linked into crystalline fibers, it would sag. This is because individual molecules, in a similar manner to water molecules, can move around or diffuse. In the case of water molecules, a container is needed to shape them. In the case of tissues, the molecules need to assemble into ordered structures and be cross-linked for the shape of the tissue to be maintained. In some cases, assemblies of macro-molecules are purposely not cross-linked so that shape can be changed quickly. For example, cytoskeletal actin filaments are rapidly assembled and disassembled to allow for changes in cell shape. In this example, cross-links prevent rapid shape changes; however, actin filaments by themselves are rigid enough to maintain cell shape at any one instant. In contrast, collagen fibers in the skin must be cross-linked to form force-bearing units to prevent tearing when skin is stretched. This comparison is used to underscore the complexity of biological tissue structure and its relationship to physical properties. In some cases, rigidity is sacrificed for structural flexibility. In other cases, structural flexibility is sacrificed for permanence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

  • Bensusan H.B and Scanu A.J., Fiber Formation From Solutions of Collagen. II. The Role of Tyrosyl Residues, J. Am. Chem. Soc. 82, 4990, 1960.

    Article  CAS  Google Scholar 

  • Berg R.A., Birk D.E., and Silver F.H., Physical Characterization of Type I Procollagen in Solution: Evidence That the Propeptides Limit Self-Assembly, Int. J. Biol. Macromol. 8, 177, 1986.

    Article  CAS  Google Scholar 

  • Bernengo J.C., Herbage D., Marion C, and Roux B., Intermolecular Interactions: Studies on Native and Enzyme-Treated Acid-Soluble Collagen, Biochem. Biophys. Acta 532, 305, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Birk D.E. and Silver F.H., Collagen Fibrillogenesis In Vitro: Comparison of Types I, II and III, Arch. Biochem. Biophys. 235, 178, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Cassel J.M., Mandelkern L., and Roberts D.E., The Kinetics of the Heat Precipitation of Collagen, J. Am. Leather Chem. Assoc. 51, 556, 1962.

    Google Scholar 

  • Comper W.D. and Veis A., Characterization of Nuclei in In Vitro Collagen Fibril Formation, Biopolymers 16, 2133, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Cooper A., Thermodynamic Studies of the Assembly In Vitro of Native Collagen Fibrils, Biochem. J. 118, 355, 1970.

    PubMed  CAS  Google Scholar 

  • Gale M., Pollanen M.S., Markiewicz P., and Goh M.C., Sequential Assembly of Collagen Revealed by Atomic Force Microscopy, Biophys. J. 68, 21248, 1995.

    Article  Google Scholar 

  • Gaskin F., Cantor C.R., and Shelanski M.I., Turbidimetric Studies of the In Vitro Assembly and Disassembly of Porcine Neurotubules, J. Mol. Biol. 89, 737, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Gross J., Highberger J.H., and Schmitt F.O., Some Factors Involved in the Fibrogenesis of Collagen In Vitro. Proc. Soc. Exp. Biol. Med. 80, 462–465, 1952.

    PubMed  CAS  Google Scholar 

  • Jackson D.S. and Fessler J.H., Isolation and Properties of a Collagen Soluble in Salt Solution at Neutral pH. Nature 176, 69–70, 1955.

    Article  PubMed  CAS  Google Scholar 

  • Kadler K.E., Holmes D.F., Trotter J.A., and Chapman J.A., Collagen Fibril Formation, Biochem. J. 316, 1, 1996.

    PubMed  CAS  Google Scholar 

  • Kobayashi K., Ito T., and Hoshino T., Electron Microscopic Demonstration of Acid-Labile, 4D-Staggered Intermolecular Association of Collagen Formed In Vitro, Collagen Rel. Res. 5, 253, 1985.

    Article  CAS  Google Scholar 

  • Korn E.D., Carlier M.-F., and Pantaloni D., Actin Polymerization and ATP Hydrolysis, Science 238, 638, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Miyahara M., Hayashi K., Berger J., Tanzawa K., Njieha F.K., and Trelstad R.L., Formation of Collagen Fibrils by Enzymatic Cleavage of Precursors of Type I Collagen In Vitro, J. Biol. Chem. 259, 9891, 1989.

    Google Scholar 

  • Oosawa F and Kasai M., A Theory of Linear and Helical Aggregations of Macro-molecules, J. Mol. Biol. 4, 10, 1962.

    Article  PubMed  CAS  Google Scholar 

  • Rayment I. and Holden H.M., The Three Dimensional Structure of a Molecular Motor, Trends Biochem. Sci. 19, 129, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Scott J.E., Proteodermatan and Proteokeratan Sulfate (Decorin, Lumincan/Fibromodulin) Proteins Are Horseshoe Shaped. Implications for Their Interactions with Collagen, Biochemistry 35, 8795, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Silver F.H., Self-Assembly of Connective Tissue Macromolecules, in Biological Materials: Structure, Mechanical Properties, and Modeling of Soft Tissues, NYU Press, New York, chapter 5, pp. 150–153, 1987.

    Google Scholar 

  • Silver F.H., Biomaterials, Medical Devices and Tissue Engineering: An Integrated Approach, Chapman & Hall, London, chapter 1, 1994.

    Book  Google Scholar 

  • Silver F.H. and Birk D.E., Kinetic Analysis of Collagen Fibrillogenesis: I. Use of Turbidity-Time Data, Collagen Rel. Res. 3, 393, 1983.

    Article  CAS  Google Scholar 

  • Silver F.H. and Birk D.E., Molecular Structure of Collagen in Solution: Comparison of Types I, II, III and V, Int. J. Biol. Macromol. 6, 125, 1984.

    Article  CAS  Google Scholar 

  • Silver F.H. and Trelstad R.L., Linear Aggregation and the Turbidimetric Lag Phase: Type I Collagen Fibrillogenesis In Vitro. J. Theor. Biol. 81, 515–526, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Snyder J.A. and Mcintosh J.R., Biochemistry and Physiology of Microtubules, Annu. Rev. Biochem. 45, 699–720, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Suarez G., Oronsky A.L., Bordas J., and Koch M.H.J., Synchrotron Radiation X-Ray Scattering in the Early Phases of In Vitro Collagen Fibril Formation, Proc. Natl. Acad. Sci. USA. 82, 4693, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Trelstad R.L., Hayashi K., and Gross J., Collagen Fibrillogenesis: Intermediate Aggregates and Suprafibrillar Order, Proc. Natl. Acad. Sci. USA 73, 4027, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Veis A. and George A., Fundamentals of Interstitial Collagen Self-Assembly, Extracellular Matrix Assembly, Academic Press, New York, pp. 15–45, 1994.

    Google Scholar 

  • Ward N.P., Hulmes D.J.S., and Chapman J.A., Collagen Self-Assembly In Vitro: Electron Microscopy of Initial Aggregates Formed During the Lag Phase, J. Mol. Biol. 190, 107, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Yuan L. and Veis A., The Self-Assembly of Collagen Molecules, Biopolymers, 12, 1437, 1975.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Silver, F.H., Christiansen, D.L. (1999). Assembly of Biological Macromolecules. In: Biomaterials Science and Biocompatibility. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0557-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0557-9_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6816-1

  • Online ISBN: 978-1-4612-0557-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics