Skip to main content

Introduction to Structure and Properties of Biological Tissues

  • Chapter
Biomaterials Science and Biocompatibility

Abstract

Macromolecules and polymers are the principle building blocks of tissues. Without these large molecules, life as we know it would not be possible, because these moieties are responsible for the completion of most biological processes. Biological macromolecules are classified into four groups of large molecules: proteins, polysaccharides (sugar polymers), nucleic acids, and lipids. These classes are differentiated by their repeat units, the chemical structure that is repeated over and over again to make a large chain. The properties of long chains of repeat units linked together are dependent on the chemistry of the chain. The physical properties of long-chained molecules also depend on the rotational freedom around the backbone, as diagrammed in Figure 2.1. Regardless of the exact chemistry of a macromolecule–s backbone, the physical behavior is fixed. The modulus or resistance of a polymer to deformation is independent of the backbone chemistry, but the temperature at which a particular behavior is observed is dependent on the backbone chemistry. At some temperature, all polymers behave like a rubber band, stretching easily and reversibly. This temperature, at which a polymer behaves like a rubbery material, is the glass-transition temperature. The glass-transition temperature is affected by the chemistry of the repeat unit and by how it affects the backbone flexibility. The relationship between the chemistry of the backbone of a polymer and its rubberiness is more complex than just analysis of the backbone rotational freedom; this is discussed later in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

  • Abbas A.K., Lichtman A.H., and Pober, J.S., The Major Histocompatibility Complex, in Cellular and Molecular Immunology, W.B. Saunders Co., Philadelphia, chapter 5, pp. 104–110, 1991.

    Google Scholar 

  • Atkins E.D.T., Meader D., and Scott J.E., Model for Hyaluronic Acid Incorporating Four Intramolecular Hydrogen Bonds, Int. J. Biol. Macromolec. 2, 318, 1980.

    Article  CAS  Google Scholar 

  • Carlier M.-F., Actin Protein Structure and Filament Dynamics, J. Biol. Chem. 266, 1, 1991.

    PubMed  CAS  Google Scholar 

  • Furlan M., Structure of Fibrinogen and Fibrin, in Fibrin Stabilization and Fibrinolysis, edited by J.L. Francis, Ellis Harwood Ltd, Chichester, England, chapter 1, pp. 17–64, 1988.

    Google Scholar 

  • Guido D., Integral Membrane Heparan Sulfate Proteoglycans, FASEB J. 7, 1023, 1993.

    Google Scholar 

  • Laurent T.C. and Fraser R.E., Hyaluronan, FASEB J. 6, 2397, 1992.

    PubMed  CAS  Google Scholar 

  • Pauling L. and Corey R.B., The Polypeptide-Chain Conformation in Hemoglobin and Other Globular Proteins, Proc. Natl. Acad. Sci. 37, 282, 1951.

    Article  PubMed  CAS  Google Scholar 

  • Pauling L. and Corey R.B., Configurations of Polypeptide Chains with Favored Orientations Around Single Bonds: Two New Pleated Sheets, Proc. Natl. Acad. Sci. 37, 729, 1951.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran G.N. and Kartha G., Structure of Collagen, Nature 176, 593, 1955.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran G.N. and Sasisekharan V., Confomation of Polypeptides and Proteins, Adv. Protein Chem. 23, 283, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Rayment I. and Holden H.M., The Three-Dimensional Structure of a Molecular Motor, Trends Biochem. Sci., 19, 129, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D.P., Keene D.R., Corson G.M., Poschl E., Bachinger H.P., Gambee J.E., and Sakai L.Y., Fibrillin-1: Organization in Microfibrils and Structural Properties, J. Molec. Biol. 258, 104, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Rocco M., Infusini E., Daga M.E., Gogioso L., and Cuniberti C., Models of Fibronectin, EMBO J. 6, 2343, 1987.

    PubMed  CAS  Google Scholar 

  • Rosenbloom J., Abrams W., and Mecham R. Extracellular Matrix 4: The Elastic Fiber, FASEB J. 7, 1208, 1993.

    PubMed  CAS  Google Scholar 

  • Rouslahti E., Integrins, J. Clin. Invest. 87, 1, 1991.

    Article  Google Scholar 

  • Schulz G.E. and Shirmer R.H., Patterns of Folding and Association of Polypeptide Chains, in Principles of Protein Structure, Springer-Verlag, New York, chapter 5, pp. 66–107, 1979.

    Chapter  Google Scholar 

  • Scott J.E., Heatley F., and Hull W.E., Secondary Structure of Hyaluronate In Solution: A 1H-N.M.R. Investigation at 300 and 500 MHZ in [2H6] Dimethyl Sulphoxide Solution, Biochem. J. 220, 197, 1984.

    PubMed  CAS  Google Scholar 

  • Silver F.H., Connective Tissue Structure, in Biological Materials: Structure, Mechanical Properties, and Modeling Soft Tissues, NYU Press, New York, chapter 2, pp. 7–68, 1987.

    Google Scholar 

  • Smack D.P., Bernhard P.K., and William D.J., Keratin and Keratinization [review], J. Acad. Derm. 30, 85, 1994.

    Article  CAS  Google Scholar 

  • Timpl R. and Brown J.C., The Laminins, Matrix Biol. 14, 275, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Vincent J.F.V., Proteins, in Structural Biomaterials, Halsted Press, John Wiley and Sons, New York, chapters 2 and 3, pp. 34–83, 1982.

    Google Scholar 

  • Wertman K.F. and Drubin D.G., Actin Constitution: Guaranteeing the Right To Assemble, Science 258, 759, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Wilson I.A., Another Twist to MHC-Peptide Recognition, Science 272, 973, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Yamada K.M., Fibronectin and Other Cell Interactive Glycoproteins, in Cell Biology of Extracellular Matrix, second edition, edited by E.D. Hay, Plenum Press, New York, chapter 4, p. 111, 1991.

    Chapter  Google Scholar 

  • Yanagishita M., Function of Proteoglycans in the Extracellular Matrix, Acta Pathol. Jpn. 43, 283, 1993.

    PubMed  CAS  Google Scholar 

  • Yurchenco P.D., Cheng Y.-S., and Colognato H., Laminin Forms: An Independent Network in Basement Membranes, J. Cell Biol. 117, 1119, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Silver, F.H., Christiansen, D.L. (1999). Introduction to Structure and Properties of Biological Tissues. In: Biomaterials Science and Biocompatibility. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0557-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0557-9_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6816-1

  • Online ISBN: 978-1-4612-0557-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics