Skip to main content

Lipid Dietary Dependencies in Zooplankton

  • Chapter
Lipids in Freshwater Ecosystems

Abstract

Zooplankton accumulate large amounts of lipids, as much as 40-70% of the dry mass of their body (Goulden and Henry, 1985; Lee et al., 1972) ome polyunsaturated fatty acids and sterols are essential but required in trace amounts. By contrast, storage and membrane lipids are generally composed of nonessential lipids and make up an important energy reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anonymous. SAS user’s guide: statistics. Version 5. SAS Institute, Cary, North Carolina, USA; 1985.

    Google Scholar 

  • Butler, N.M.; Suttle, C.A.; Neill, W.E. Discrimination by freshwater zooplankton between single algal cells differing in nutritional status. Oecologia 78:368–372; 1989.

    Article  Google Scholar 

  • Carmichael, W.W.; Gorham, P. An improved method for obtaining axenic clones of planktonic blue-green algae. J. Phycol. 10:238–240; 1974.

    Google Scholar 

  • Conklin, D.E.; Provasoli, L. Nutritional requirements of the water flea, Moina macrocopa. Biol. Bull. 152:337–350; 1977.

    Article  CAS  Google Scholar 

  • Cowgill, U.M.; Williams, D.M.; Esquivel, J.B. Effect of maternal nutrition on fat content single algal cells differing in nutritional status. Oecologia 78:368–372; 1989.

    Article  Google Scholar 

  • Carmichael, W.W.; Gorham, P. An improved method for obtaining axenic clones of xand longevity of neonates of Daphnia magna. J. Crust. Biol. 4:173–190; 1984.

    Article  Google Scholar 

  • Cowles, T.J.; Olson, R.J.; Chisholm, S.W. Food selection by copepods: discrimination on the basis of food quality. Mar. Biol. 100:41–49; 1988.

    Google Scholar 

  • D’Abramo, L.R. Dietary fatty acid and temperature effects on the productivity of the cladoceran, Moina macrocopa. Biol. Bull. 157:234–248; 1979.

    Article  Google Scholar 

  • Erwin, J.A. Comparative biochemistry of fatty acids in eukaryotic microorganisms. In: Erwin, J.A., ed. Lipids and Biomembranes of Eukaryotic Microorganisms. New York: Academic Press; 1973:p. 41–143.

    Google Scholar 

  • Frank, P.W. Prediction of population growth form in Daphnia pulex cultures. Am. Nat. 94:357–372; 1960.

    Article  Google Scholar 

  • Goulden, C.E.; Henry, L. Lipid energy reserves and their role in Cladocera. In: Meyers, D.G.; Strickler, J.R., eds. Trophic Interactions within Aquatic Ecosystems. Boulder, CO: Selected Symposium Volume, American Association for the Advancement of Science, Westview Press; 1985:p. 167–185.

    Google Scholar 

  • Goulden, C.E.; Place, A. Lipid accumulation and allocation in daphniid Cladocera. Bull. Mar. Res. 53:106–114; 1993.

    Google Scholar 

  • Goulden, C.E.; Place, A.R. Fatty acid synthesis and accumulation rates in daphniids. J. Exp. Zool. 256:168–178; 1990.

    Article  CAS  Google Scholar 

  • Goulden, C.E.; Henry, L.; Berrigan, D. Egg size, post-embryonic yolk, and survival ability. Oecologia 72:28–31; 1987.

    Article  Google Scholar 

  • Goulden, C.E.; Henry, L.; Tessier, A.; Durand, M. Body size, energy reserves, and competitive ability in three species of Cladocera. Ecology 63:1780–1789; 1982.

    Article  Google Scholar 

  • Hewes, C.D.; Holm-Hansen, O. A method for recovering nanoplankton from filters for identification with the microscope: the filter-transfer-freeze (FTF) technique. Limnol. Oceanogr. 28:389–394; 1983.

    Google Scholar 

  • Houde, S.E.L.; Roman, M.R. Effects of food quality on the functional ingestion response of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 40:69–77; 1987.

    Article  Google Scholar 

  • John, M.K. Colorimetric determination of phosphorus in soil and plant material with ascorbic acid. Soil Sci. 109:214–220; 1970.

    Article  CAS  Google Scholar 

  • Kiorboe, T. Phytoplankton growth rate and nitrogen content: implications for feeding and fecundity in a herbivorous copepod. Mar. Ecol. Prog. Ser. 55:229–234; 1989.

    Article  Google Scholar 

  • Knoechel, R.; DeNoyelles, F., Jr. Analysis of the response of hypolimnetic phytoplankton in continuous culture to increased light or phosphorus using track autoradiography. Can. J. Fish. Aquat. Sci. 37:434–441; 1980.

    Article  Google Scholar 

  • Knoechel, R.; Kalif, J. The advantages and disadvantages of grain density and track autoradiography. Limnol. Oceanogr. 24:1170–1171; 1979.

    Google Scholar 

  • Knoechel, R.; Kalff, J. Track autoradiography: a method for the determination of phytoplankton species productivity. Limnol. Oceanogr. 21:590–596; 1976.

    CAS  Google Scholar 

  • Kreeger, D.A.; Goulden, C.E.; Kilham, S.S.; Lynn, S.G.; Datta, S.; Interlandi, S.J. Seasonal changes in the biochemistry of lake seston. J. Freshwat. Biol. 38:535–554; 1997.

    Article  Google Scholar 

  • Lampert, W., ed. Food limitation in zooplankton. Arch. Hydrobiol. Suppl. Ergebn. Limnol. 21:497; 1985.

    Google Scholar 

  • Lampert, W. Studies on the carbon balance of Daphnia pulex De Geer as related to environmental conditions. II. The dependence of carbon assimilation on animal size, temperature, food concentration and diet species. Arch. Hydrobiol. Suppl. 48:310–335; 1977.

    CAS  Google Scholar 

  • Lampert, W.; Bohrer, R. Effect of food availability on the respiratory quotient of Daphnia magna. Comp. Biochem. Physiol. 78A:221–223; 1984.

    Google Scholar 

  • Langdon, C.J. Preparation and evaluation of protein microcapsules for a marine sus-pension-feeder, the Pacific oyster Crassostrea gigas. Mar. Biol. 102:217–224; 1989.

    CAS  Google Scholar 

  • Langdon, C.J.; DeBevoise, A.E. Effect of microcapsule type on delivery of dietary protein to a marine suspension-feeder, the oyster Crassostrea gigas. Mar. Biol. 105:437–443;1990.

    Google Scholar 

  • Langdon, C.J.; Waldock, M.J. The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. J. Mar. Biol. Assn. U.K. 61:431–447; 1981.

    Article  CAS  Google Scholar 

  • Lee, R.F.; Nevenzel, J.C.; Paffenhofer, G.A. The presence of wax esters in marine plank-tonic copepods. Naturwissenschaften 59:406–411; 1972.

    Article  CAS  Google Scholar 

  • Lee, R.F.; Nevenzel, J.C.; Paffenhofer, G.A. Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Mar. Biol. 9:99–108; 1971.

    Article  CAS  Google Scholar 

  • Muller-Navarra, D. Evidence that a highly unsaturated fatty acid limits growth in nature.Arch. Hydrobiol. 132:297–307; 1995.

    Google Scholar 

  • Murata, N.; Nishida, I. Lipids of blue-green algae (Cyanobacteria). In: Stumpf, P. K., Conn, E.E., eds. The Biochemistry of Plants. vol. 9. New York: Academic Press; 1987:p. 315–347.

    Google Scholar 

  • Parrish, C.C.; Ackman, R.G. Chromarod separations for the analysis of marine lipid classes by latroscan thin-layer chromatography-flame ionization detection. J. Chromatogr. 262:103–112; 1983.

    Article  CAS  Google Scholar 

  • Peters, R.H. Methods for the study of feeding, grazing and assimilation by zooplankton. In: Downing, J.A.; Rigler, F.H., eds. A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Oxford: Blackwell Scientific; 1984:p. 336–412.

    Google Scholar 

  • Provasoli, L.; Shiriashi, K.; Lance, J.R. Nutritional idiosyncrasies of Artemia and Tigriopus in monoxenic culture. Ann. N.Y. Acad. Sci. 77:250–261; 1959.

    Article  Google Scholar 

  • Reynolds, C.S. The Ecology of Freshwater Phytoplankton. Cambridge, U.K., Cambridge University Press; 1984.

    Google Scholar 

  • Shifrin, N.S.; Chisholm, S.W. Phytoplankton lipids: Interspecific differences and effects on nitrate. silicate and light-dark cycles. J. Phycol. 17:374–384; 1981.

    Article  CAS  Google Scholar 

  • Scott, J.M. Effect of growth rate of the food alga on the growth/ingestion efficiency of a marine herbivore. J. Mar. Biol. Assn. U.K. 60:681–702; 1980.

    Article  CAS  Google Scholar 

  • Siron, R.; Giusti, G.; Berland, B. Changes in the fatty acid composition of Phaeodactvlum tricornutum and Dunaliella teriolecta during growth and under phosphorus deficiency. Mar. Ecol. Prog. Ser. 55:95–100; 1989.

    Article  CAS  Google Scholar 

  • Snedecor, G.W.; Cochran, W.G. Statistical Methods, 6th ed. Ames, IA: Iowa State University Press; 1967.

    Google Scholar 

  • Sokal, R.R.; Rohlf, F.J. Biometry. New York: W. H. Freeman. 1981.

    Google Scholar 

  • Stainton, M.P. A syringe gas-stripping procedure for gas chromatographic determination of dissolved inorganic and organic carbon in fresh water and carbonate in sediments. J. Fish. Res. B. Can. 30:1441–1445; 1973.

    Article  CAS  Google Scholar 

  • Taylor, B.; Gabriel. W. Reproductive strategies of two similar Daphnia species. Verh. Int. Verein. Limnol. 22:3047–3050; 1985.

    Google Scholar 

  • Tessier, A.J. Comparative population regulation of two planktonic Cladocera (Holopedium gibberum and Daphnia catawba). Ecology 67:285–302; 1986.

    Article  Google Scholar 

  • Tessier, A.J.; Goulden, C.E. Estimating food limitation in cladoceran populations. Limnol. Oceanogr. 27:707–717; 1982.

    Google Scholar 

  • Thompson, P.A.; Guo, M-X.; Harrison, P.J. The influence of irradiance on the biochemical composition of three phytoplankton species and their nutritional value to larval Pacific oysters (Crassostrea gigas). Aquaculture 143:379–391; 1993.

    Article  Google Scholar 

  • Thompson, P.A.; Guo, M-X.; Harrison, P.J. The influence of temperature. 1. On the biochemical composition of eight species of marine phytoplankton. J. Phycol. 28:481–488; 1992.

    Article  CAS  Google Scholar 

  • Threlkeld, S.T. The midsummer dynamics of two Daphnia species in Wintergreen Lake, Michigan. Ecology 60:165–179; 1979.

    Article  Google Scholar 

  • Vollenweider, R.A. Elemental and biochemical composition of plankton biomass; some comments and explorations. Arch. Hydrobiol. 105:11–29; 1985.

    CAS  Google Scholar 

  • Wilkinson, L. Systat: The System for Statistics. Evanston, IL: SYSTAT, Inc.; 1988. Wood, B.J.B. Fatty acids and saponifiable lipids. In: Stewart, W.D.P., ed. Algal Physiology and Biochemistry. Botanical Monographs. vol. 10. Berkeley, CA: University of California Press; 1974:p. 236–265.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goulden, C.E., Moeller, R.E., McNair, J.N., Place, A.R. (1999). Lipid Dietary Dependencies in Zooplankton. In: Arts, M.T., Wainman, B.C. (eds) Lipids in Freshwater Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0547-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0547-0_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6813-0

  • Online ISBN: 978-1-4612-0547-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics