Skip to main content

Comparison of Lipids in Marine and Freshwater Organisms

  • Chapter
Lipids in Freshwater Ecosystems

Abstract

Lipids, carbohydrates, and proteins are the basic components of aquatic organisms, and all have distinct roles. For example, the carbohydrates can be structural components in phytoplankton and macrophytes and energy reserves in bivalve mollusks. Carbohydrates are barely mentioned in fish biochemistry except for glucose, which has a function in muscle energy metabolism (Kiessling et al., 1995). The proteins do not seem important in primitive organisms, but some invertebrates use free amino acids for ionic balance and, in moving up the evolutionary scale, the role of proteins in muscle of mobile life forms becomes very important. The role of lipids in photosynthetic carbon fixation is not obvious although the photosynthetic apparatus depends on certain fatty acids and lipid classes (Gun and Harwood, 1991). In most organisms, fatty acids are commonly three-quarters of the mass of phospholipids, which are critical in membranes. Aquatic bacteria survive in a highly stressful environment because they are encased in lipids. Keweloh and Heipieper (1996) point out that stable saturated fatty acids are present in these lipids, but the high-meltingtransmonoethylenic fatty acids may be formed in parallel to, or from, the commoncisisomers, to adapt this type of organism to a hostile environment. More intriguing is the recent but repeated discovery of eicosapentaenoic acid (20:5w3, popularly designated EPA) in marine bacteria (Nichols et al., 1996;Yazawa, 1996;Henderson et al., 1995a;Akimoto et al., 1990). Hitherto, this fatty acid, sensitive to oxidation, would have been associated with invertebrates that accumulate it from phytoplankton (Ackman and Kean-Howie, 1995). In moving up the evolutionary scale, lipids also play a major role in the neurotransmission system critical to mobile animals and in sensory perception organs such as the retina ortapetum lucidumof the fish eye, where docosahexaenoic acid (22:6w3, popularly designated DHA) is important (Nicol et al., 1972). However, marine invertebrates do not seem to have this specific requirement for high levels of DHA, and in the case ofArtemiasp. eye phospholipids, there is no 22:6w3 (Navarro et al., 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackman, R.G. Composition and nutritive value of fish and shellfish lipids. In: Ruiter, A., ed. Fish and Fishery Products. Wallingford, Oxon, U.K.: CAB International; 1995:p. 117–156.

    Google Scholar 

  • Ackman, R.G. Extraction and analysis of omega-3 fatty acids: procedures and pitfalls. In: Drevon, C.A.; Baksaas, I.; Krokan, H.E., eds. Omega-3 Fatty Acids: Metabolism and Biological Effects. Basel: Birkhäuser Verlag; 1993:p. 11–20.

    Google Scholar 

  • Ackman, R.G. Application of gas-liquid chromatography to lipid separation and analysis: qualitative and quantitative analysis. In: Chow, C.K., ed. Fatty Acids in Foods and Their Health Implications: New York: Marcel Dekker; 1992:p. 47–63.

    Google Scholar 

  • Ackman, R.G. Application of thin-layer chromatography to lipid separation: detection methods. In: Perkins, E.G., ed. Analyses of Fats, Oils and Lipoproteins. Champaign, IL: American Oil Chemists’ Society; 1991:p. 97–121.

    Google Scholar 

  • Ackman, R.G. Nutritional composition of fats in Seafoods. Prog. Food Nutr. Sci. 13:161–241; 1989.

    PubMed  CAS  Google Scholar 

  • Ackman, R.G. The year of the fish oils. Chem. Ind. (March 7): 139–145; 1988.

    Google Scholar 

  • Ackman, R.G. Fish lipids I. In: Connell, J.J., ed. Advances in Fish Science and Technology. Farnham, U.K.: Fishing News Books; 1980:p. 87–103.

    Google Scholar 

  • Ackman, R.G.; Kean-Howie, J. Fatty acids in aquaculture: are o-3 fatty acids always important? In: Lim, C.E.; Sessa, D.J., eds. Nutrition and Utilization Technology in Aquaculture. Champaign, IL: American Oil Chemists’ Society; 1995:p. 82–104.

    Google Scholar 

  • Ackman, R.G.; Takeuchi, T. Comparison of fatty acids and lipids of smolting hatchery-fed and wild Atlantic salmonSalmo salar.Lipids 21:117–120; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Ackman, R.G.; Ratnayake, W.M.N.; Olsson, B. The “basic” fatty acid composition of Atlantic fish oils: potential similarities useful for enrichment of polyunsaturated fatty acids by urea complexation. J. Am. Oil Chem. Soc. 65:136–138; 1988.

    Article  CAS  Google Scholar 

  • Ackman, R.G.; Linke, B.A.; Hingley, J. Some details of fatty acids and alcohols in the lipids of North Atlantic copepods. J. Fish. Res. Bd. Can. 31:1812–1818; 1974.

    Article  CAS  Google Scholar 

  • Ackman, R.G.; Eaton, C.A.; Bligh, E.G.; Lantz, A.W. Freshwater fish oils: yields and composition of oils from reduction of sheepshead, tullibee, maria, and alewife. J. Fish. Res. Bd. Can. 24:1219–1227; 1967.

    Article  CAS  Google Scholar 

  • Ahlgren, G.; Blomqvist, P.; Boberg, M; Gustafsson, I-B. Fatty acid content of the dorsal muscle—an indicator of fat quality in freshwater fish. J. Fish Biol. 45:131–157; 1994.

    CAS  Google Scholar 

  • Akimoto, M.; Ishii, T.; Yamagaki, K.; Ohtaguchi, K.; Koide, K.; Yazawa, K. Production of eicosapentaenoic acid by a bacterium isolated from mackerel intestines. J. Am. Oil Chem. Soc. 67:911–915; 1990.

    Article  CAS  Google Scholar 

  • Albers, C.S.; Kattner, G.; Hagen, W. The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: evidence of energetic adaptions. Mar. Chem. 55:347–358; 1996.

    CAS  Google Scholar 

  • Ando, Y.; Nishimura, K.; Aoyanagi, N.; Takagi, T. Stereospecific analysis of fish oil triacyl-sn-glycerols. J. Am. Oil. Chem. Soc. 69:417–424; 1992.

    Article  CAS  Google Scholar 

  • Arts, M.T.; Robarts, R.D.; Evans, M.S. Energy reserve lipids of zooplanktonic crustaceans from an oligotrophic saline lake in relation to food resources and temperature. Can. J. Fish. Aquat. Sci. 50:2404–2420; 1993.

    Article  CAS  Google Scholar 

  • Bakes, M.J.; Nichols, P.R. Lipid, fatty acid and squalene composition of liver oil from six species of deep-sea sharks collected in southern Australian waters. Comp. Biochem. Physiol. 110B:267–275; 1995.

    CAS  Google Scholar 

  • Bautista, M.N.; del Valle, M.J.; Orejana, F.M. Lipid and fatty acid composition of brackish-water and freshwater-reared milkfish(Chanos chanosFroskal). Aquaculture 96:241248; 1991.

    Google Scholar 

  • Bell, J.G.; Ashton, I.; Secombes, C.J.; Weitzel, B.R.; Dick, J.R.; Sargent, J.R. Dietary lipid affects phospholipid fatty acid compositions, eicosanoid production and immune function in Atlantic salmon(Salmo salar).Prostaglandins Leukotrienes Essential Fatty Acids 54:173–182; 1996.

    Article  CAS  Google Scholar 

  • Bell, J.G.; Ghioni, C.; Sargent, J.R. Fatty acid compositions of 10 freshwater invertebrates which are natural food organisms of Atlantic salmon parr(Salmo salar):a comparison with commercial diets. Aquaculture 128:301–313; 1994.

    Article  CAS  Google Scholar 

  • Bell, J.G.; Dick, J.R.; McVicar, A.H.; Sargent, J.R.; Thompson, K.D. Dietary sunflower, linseed and fish oils affect phospholipid fatty acid composition, development of cardiac lesions, phospholipase activity and eicosanoic production in Atlantic salmon(Salmo salar).Prostaglandins Leukotrienes Essential Fatty Acids 49:665–673; 1993.

    Article  CAS  Google Scholar 

  • Bell, M.V.; Sargent, J.R. Fatty acid analyses of phosphoglycerides from tissues of the clamChlamys islandica(Muller) and the starfishCtenodiscus crispatus(Retzius) from Balsfjorden, northern Norway. J. Exp. Mar. Biol. Ecol. 87:31–40; 1985.

    Article  CAS  Google Scholar 

  • Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–917; 1959.

    Article  PubMed  CAS  Google Scholar 

  • Bordier, C.G.; Sellier, N.; Foucault, A.P.; Le Goffic, F. Purification and characterization of deep sea sharkCentrophorus squamosusliver oil I-O-alkylglycerol ether lipids. Lipids 31:521–528; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Brosche, T. Methyl enol ethers as artifacts in capillary gas chromatographic profiles of aldehyde dimethyl acetals. J. Chromatogr. 345:219–227; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Bruner, K.A.; Fisher, S.W.; Landrum, P.F. The role of the zebra musselDreissena polymorphain contaminant cycling; I. The effect of body size and lipid content on the bioconcentration of PCBs and PAHs. J. Great Lakes Res. 20:725–734; 1994.

    Article  CAS  Google Scholar 

  • Castell, J.D.; Mason, E.G.; Covey, J.F. Cholesterol requirements of juvenile American lobster(Homarus americanus).J. Fish. Res. Bd. Can. 32:1431–1435; 1975.

    Article  CAS  Google Scholar 

  • Cavaletto, J.F.; Nalepa, T.F.; Dermott, R.; Gardner, W.S.; Quigley, M.A.; Lang, G.A. Seasonal variation of lipid composition, weight, and length in juvenileDiporeiaspp. (Amphipoda) from Lakes Michigan and Ontario. Can. J. Fish. Aquat. Sci. 53:2044–2051; 1996.

    Article  CAS  Google Scholar 

  • Cavaletto, J.F.; Vanderploeg, H.A.; Gardner, W.S. Wax esters in two species of freshwater zooplankton. Limnol. Oceanogr. 34:785–789; 1989.

    CAS  Google Scholar 

  • Chandumpai, A.; Dall, W.; Smith, D.M. Lipid-class composition of organs and tissues of the tiger prawnPenaeus esculentusduring the moulting cycle and during starvation. Mar. Biol. 198:235–245; 1991.

    Google Scholar 

  • Chapelle, S. Aspects of phospholipid metabolism in crustaceans as related to changes in environmental temperatures and salinities. Comp. Biochem. Physiol. 84B:423–439; 1986.

    CAS  Google Scholar 

  • Chapelle, S.; Hakanson, J.L.; Nevenzel, J.C.; Benson, A.A. Ether glycerophospholipids of gills of two Pacific crabsCancer antennariusand Portunus xantusi.Lipids 22:76–79; 1987.

    Article  CAS  Google Scholar 

  • Christie, W.W. Detectors for high-performance liquid chromatography of lipids with special reference to evaporative light-scattering detection. In: Christie, W.W., ed. Advances in Lipid Methodology—One. Ayr, U.K.: The Oily Press; 1992:p. 239–271.

    Google Scholar 

  • Christie, W.W. High-Performance Liquid Chromatography and Lipids. Oxford: Pergamon Press; 1987.

    Google Scholar 

  • Cosper, C.I.; Adman, R.G. Occurrence ofcis-9 10-methyleneoctadecenoic acids the lipids of immature and matureFundulus heteroclitus (L.) and its roe. Comp. Biochem. Physiol. 75B:649–654; 1983.

    CAS  Google Scholar 

  • D’Abramo, L.R.; Bordner, C.E.; Conklin, D.E.; Baum, N.A. Sterol requirement of juvenile lobstersHomarussp. Aquaculture 42:13–25; 1984.

    Article  Google Scholar 

  • de Koning, A.J.; Evans, A.A. Phospholipids of marine origin. The lantern fish(Lampanyctodes hectoris).J. Sci. Food Agric. 56:503–510; 1991.

    Article  Google Scholar 

  • Dembitsky, V.M.; Rezanka, T.; Kashin, A.G. Comparative study of the endemic freshwater fauna of Lake Baikal—VI. Unusual fatty acid and lipid composition of the endemic spongeLubomirskia baicalensisand its amphipod crustacean parasiteBrandtia (Spinacanthus) parasitica.Comp. Biochem. Physiol. 109B:415–426; 1994.

    CAS  Google Scholar 

  • Dembitsky, V.M.; Rezanka, T.; Kashin, A.G. Fatty acid and phospholipid composition of freshwater molluscsAnadonta piscinalisandLimnaea fragilisfrom the river Volga. Comp. Biochem. Physiol. 105B:597–601; 1993.

    CAS  Google Scholar 

  • Deridovich, I.I.; Reunova, O.V. Prostaglandins: reproduction control in bivalve molluscs. Comp. Biochem. Physiol. 104A:23–27; 1993.

    Article  CAS  Google Scholar 

  • Desvilettes, C.; Bourdier, G.; Breton, J-C. Lipid class and fatty acid composition of planktivorous larval pikeEsox luciusliving in a natural pond. Aquat. Living Resour. 7:67–77; 1994.

    Article  Google Scholar 

  • Early, T.A.; Kundrat, J.T.; Schorp, T.; Glonek T. Lake Michigan sponge phospholipid variations with habitat: a31P nuclear magnetic resonance study. Comp. Biochem. Physiol. 114B:77–89; 1996.

    CAS  Google Scholar 

  • El Babili, M.; Brichon, G.; Zwingelstein, G. Sphingomyelin metabolism is linked to salt transport in the gills of euryhaline fish. Lipids 31:385–392; 1996.

    Article  PubMed  Google Scholar 

  • Exler, J., ed. Composition of Foods: Finfish and Shellfish Products. Human Nutrition Information Service Agriculture Handbook 8–15 (Revised). Washington, DC: U.S. Department of Agriculture; 1987.

    Google Scholar 

  • Fang, J.; Comet, P.A.; Brooks, J.M.; Wade, T.L. Nonmethylene-interrupted fatty acids of hydrocarbon seep mussels: occurrence and significance. Comp. Biochem. Physiol. 104B:287–291; 1993.

    CAS  Google Scholar 

  • Fodor, E.; Jones, R.H.; Buda, C.; Kitajka, K.; Dey, I.; Farkas, T. Molecular architecture and biophysical properties of phospholipids during thermal adaptation in fish: an experimental and model study. Lipids 30:1119–1126; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, A.J. Triacylglycerol content as a condition index for fish, bivalve, and crustacean larvae. Can. J. Fish. Aquat. Sci. 46:1868–1873; 1989.

    Article  CAS  Google Scholar 

  • Fullarton, J.G.; Dando, P.R.; Sargent, J.R.; Southward, A.J.; Southward, E.C. Fatty acids of hydrothermal ventRidgeia piscesaeand inshore bivalves containing symbiotic bacteria. J. Mar. Biol. Assn. U.K. 75:455–468; 1995a.

    Article  CAS  Google Scholar 

  • Fullarton, J.G.; Wood, A.P.; Sargent, S.R. Fatty acid composition of lipids from sulphur-oxidizing and methylotrophic bacteria from thyasirid and lucinid bivalves. J. Mar. Biol. Assn. U.K. 75:445–454; 1995b.

    Article  CAS  Google Scholar 

  • Gardner, W.S.; Nalepa, T.F.; Frez, W.A.; Cichocki, E.A.; Landrum, P.F. Seasonal patterns in lipid content of Lake Michigan macroinvertebrates. Can. J. Fish. Aquat. Sci. 42:18271832; 1985.

    Google Scholar 

  • Gauvin, J.M.; Gardner, W.S.; Quigley, M.A. Effects of food removal on nutrient release rates and lipid content of Lake MichiganPontoporeia hoyi.Can. J. Fish. Aquat. Sci. 46:1125–1130; 1989.

    Article  Google Scholar 

  • Ghioni, C.; Bell, J.G.; Sargent, J.R. Polyunsaturated fatty acids in neutral lipids and phos-pholipids of some freshwater insects. Comp. Biochem. Physiol. 114B:161–170; 1996.

    CAS  Google Scholar 

  • Giese, A.C. Lipids in the economy of marine invertebrates. Physiol. Rev. 46:244–298; 1966.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Baro, M.D.R.; Pollero, R.J. Lipid characterization and distribution among tissues of the freshwater crustaceanMacrobrachium borelliiduring an annual cycle. Comp. Biochem. Physiol. 91B:711–715; 1988.

    CAS  Google Scholar 

  • Goodnight, S.H. The fish oil puzzle. Sci. Med. 3(5):42–51; 1996.

    CAS  Google Scholar 

  • Goulden, G.E.; Henry, L.L. Lipid energy reserves and their role in Cladocera. In: Meyers, D.G.; Strickler, J.R., eds. Trophic Interactions within Aquatic Ecosystems. American Association for the Advancement of Science Selected Symposium, Washington, D.C., 85, 1981 January 3–8, Toronto, Ontario. 1984:p. 167–185.

    Google Scholar 

  • Graeve, M.; Kattner, G. Species-specific differences in intact wax esters ofCalanus hyperboreusandC. finmarchicusfrom Fram Strait—Greenland Sea. Mar. Chem. 39:269–281; 1992.

    CAS  Google Scholar 

  • Grigor, M.R.; Sutherland, W.H.; Phleger, C.F. Wax-ester metabolism in the orange roughyHoplostethus atlanticus(Beryciformes: Trachichthyidae). Mar. Biol. 105:223–227; 1990.

    CAS  Google Scholar 

  • Gun, M.I.; Harwood, J.L. Lipid Biochemistry—An Introduction, 4th ed. London: Chapman and Hall; 1991.

    Google Scholar 

  • Guth, H.; Zhang, Y.; Laskawy, G.; Grosch, W. Furanoid fatty acids in oils from soybeans lacking lipoxygenase isoenzymes. J. Am. Oil Chem. Soc. 72:397–398; 1995.

    Article  CAS  Google Scholar 

  • Hansen, H.J.M.; Olsen, A.G.; Rosenkilde, P. Comparative studies on lipid metabolism in salt-transporting organs of the rainbow trout(Oncorhynchus mykissW.). Further evidence of monounsaturated phosphatidylethanolamine as a key substance. Comp. Biochem. Physiol. 103B:81–87; 1992.

    CAS  Google Scholar 

  • Hanson, B.J.; Cummins, K.W.; Cargill, A.S.; Lowry, R.R. Lipid content, fatty acid composition, and the effect of diet on fats of aquatic insects. Comp. Biochem. Physiol. 80B:257–276; 1985.

    CAS  Google Scholar 

  • Hayashi, K.; Kawasaki, K-I. Unusual occurrence of diacylglyceryl ethers in liver lipids from two species of gonatid squids. Bull. Jpn. Soc. Sci. Fish. 51:593–597; 1985.

    Article  CAS  Google Scholar 

  • Hazel, J.R.; Williams, E.E. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 29:167–227; 1990.

    Article  CAS  Google Scholar 

  • Henderson, R.J.; Tocher, D.R. The lipid composition and biochemistry of freshwater fish. Prog. Lipid Res. 26:281–347; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R.J.; Millar, R-M.; Sargent, J.R. Effect of growth temperature on the positional distribution of eicosapentaenoic acid andtranshexadecenoic acid in the phospholipids of aVibriospecies of bacterium. Lipids 30:181–185; 1995a.

    Article  CAS  Google Scholar 

  • Henderson, R.J.; Park, M.T.; Sargent, J.R. The desaturation and elongation of 14C-labelled polyunsaturated fatty acids by pike(Esox luciusL.) in vivo. Fish Physiol. Biochem. 14:223–236; 1995b.

    CAS  Google Scholar 

  • Henderson, R.J.; Bell, M.V.; Sargent, J.R. The conversion of polyunsaturated fatty acids to prostaglandins by tissue homogenates of the turbotScophthalmus maximus(L.). J. Exp. Mar. Biol. Ecol. 85:93–99; 1985.

    Article  CAS  Google Scholar 

  • Herbes, S.E.; Allen, A.P. Lipid quantification of freshwater invertebrates: method modification for microquantitation. Can. J. Fish. Aquat. Sci. 40:1315–1317; 1983.

    Article  CAS  Google Scholar 

  • Hill, C.; Quigley, M.A.; Cavaletto, J.F.; Gordon, W. Seasonal changes in lipid content and composition in the benthic amphipodsMonoporeia affinisandPontoporeia femorata.Limnol. Oceanogr. 37:1280–1289; 1992.

    CAS  Google Scholar 

  • Innis, S.M.; Rioux, F.M.; Auestad, N.; Ackman, R.G. Marine and freshwater fish oil varying in arachidonic, eicosapentaenoic and docosahexaenoic acids differ in their effects on organ lipids and fatty acids in growing rats. J. Nutr. 125:2286–2293; 1995.

    PubMed  CAS  Google Scholar 

  • Irazu, C.E.; González-Baró, M.D.R.; Pollero, R.J. Effect of environmental temperature on mitochondria] 13-oxidation activity in gills and hepatopancreas of the freshwater shrimpMacrobrachium borellii. Comp. Biochem. Physiol. 102B:721–725; 1992.

    CAS  Google Scholar 

  • Ishii, K.; Okajima, H.; Koyamatsu, T.; Okada, Y.; Watanabe, H. The composition of furan fatty acids in the crayfish. Lipids 23:694–700; 1988.

    Article  CAS  Google Scholar 

  • Jeong, B-Y.; Ohshima, T.; Ushio, H.; Koizumi, C. Lipids of cartilaginous fish: composition of ether and ester glycerophospholipids in the muscle of four species of shark. Comp. Biochem. Physiol. 113B:305–312; 1996a.

    CAS  Google Scholar 

  • Jeong, B-Y.; Ohshima, T.; Koizumi, C. Hydrocarbon chain distribution of ether phospholipids of the ascidianHalocynthia roretziand the sea urchinStrongylocentrotus intermedius.Lipids 31:9–18; 1996b.

    Article  CAS  Google Scholar 

  • Josephson, D.B.; Lindsay, R.C.; Stuiber, D.A. Variations in the occurrences of enzymatically derived volatile aroma compounds in salt-and freshwater fish. J. Agric. Food Chem. 32:1344–1347; 1984.

    Article  CAS  Google Scholar 

  • Käkelä, R.; Ackman, R.G.; Hyvärinen, H. Very long chain polyunsaturated fatty acids in the blubber of ringed seals(Phoca hispidasp.) from Lake Saimaa, Lake Ladoga, the Baltic Sea, and Spitsbergen. Lipids 30:725–731; 1995.

    Article  PubMed  Google Scholar 

  • Kang, S-J.; Lall, S.P.; Ackman, R.G. Digestion of the 1–0-alkyl diacylglycerol ethers of Atlantic dogfish liver oils by Atlantic salmonSalmo salar.Lipids 32:19–30; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Kattner, G.; Graeve, M.; Ernst, W. Gas-liquid chromatographic method for the determination of marine wax esters according to the degree of unsaturation. J. Chromatogr. 513:327–332; 1990.

    Article  CAS  Google Scholar 

  • Kean, J.C.; Castell, J.D.; Boghen, A.G.; D’Abramo, L.R.; Conklin, D.E. A re-evaluation of the lecithin and cholesterol requirements of juvenile lobster(Homarus americanus)using crab protein-based diets. Aquaculture 47:143–149; 1985.

    Article  CAS  Google Scholar 

  • Keweloh, H.; Heipieper, H.J.Transunsaturated fatty acids in bacteria. Lipids 31.129–137; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kiessling, A.; Larsson, L.; Kiessling, K-H.; Lutes, P.B.; Storebakken, T.; Hung, S.S.S. Spawning induces a shift in energy metabolism from glucose to lipid in rainbow trout white muscle. Fish Physiol. Biochem. 14:439–448; 1995.

    CAS  Google Scholar 

  • Kiron, V.; Fukuda, H.; Takeuchi, T.; Watanabe, T. Essential fatty acid nutrition and defence mechanisms in rainbow troutOncorhynchus mykiss. Comp. Biochem. Physiol. 111A:361–367; 1995.

    Article  CAS  Google Scholar 

  • Kitamura, H.; Kitahara, S.; Koh, H.B. The induction of larval settlement and meta-morphosis of two sea urchinsPseudocentrotus depressusand Anthocidaris erassispiWa, by free fatty acids extracted from the coralline red alga Corallina pilulifera.Mar. Biol. 115:387–392; 1993.

    CAS  Google Scholar 

  • Koechlin, N.; Polonsky, J.; Varenne, J. Accumulation of cholesterol and cholesterol esters in the nephridia of a polychaeta annelida(Sabella pavoninaSavigny). Comp. Biochem. Physiol. 68A:391–397; 1981.

    Article  CAS  Google Scholar 

  • Koizumi, C.; Jeong, B-Y.; Ohshima, T. Fatty chain composition of ether and ester glycerophospholipids in the Japanese oysterCrassostrea gigas(Thunberg). Lipids 25:363–370; 1990.

    Article  CAS  Google Scholar 

  • Lands, W.E.M. Fish and Human Health. Orlando, FL: Academic Press; 1986.

    Google Scholar 

  • Lee, R.F.; Patton, J.S. Alcohol and waxes. In: Ackman, R.G., ed. Marine Biogenic Lipids, Fats, and Oils, vol. I. Boca Raton, FL: CRC Press; 1989:p. 73–102.

    Google Scholar 

  • Lie, O.; Lambertsen, G. Lipid digestion and absorption in cod(Gadus morhua)comparing triacylglycerols, wax esters and diacylalkylglycerols. Comp. Biochem. Physiol. 98A:159–163; 1991.

    Article  CAS  Google Scholar 

  • Lindsay, R.C. Fish flavors. Food Rev. Int. 6:431–455; 1990.

    Article  Google Scholar 

  • Linko, R.R.; Rajasilta, M.; Hiltunen, R. Comparison of lipid and fatty acid composition in vendace(Coregonus albulaL.) and available plankton feed. Comp. Biochem. Physiol. 103A:205–212; 1992.

    Article  CAS  Google Scholar 

  • Linko, R.R.; Kaitaranta, J.K.; Vuorela, R. Comparison of the fatty acids in Baltic herring and available plankton feed. Comp. Biochem. Physiol. 82B:699–705; 1985.

    CAS  Google Scholar 

  • Litchfield C. Analysis of Triglycerides. New York: Academic Press; 1972.

    Google Scholar 

  • Mangold, H.K.; Paltauf, F., eds. Ether Lipids: Biochemical and Biomedical Aspects. New York: Academic Press; 1983.

    Google Scholar 

  • McGill, A.S.; Moffat, C.F. A study of the composition of fish liver and body oil triglycerides. Lipids 27:360–370; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Merican, Z.O.; Shim, K.F. Qualitative requirements of essential fatty acids for juvenilePenaeus monodon.Aquaculture 147:275–291; 1996.

    Article  CAS  Google Scholar 

  • Moffat, C.F. Fish oil triglycerides: a wealth of variation. Lipid Tech. 7:125–129; 1995.

    Google Scholar 

  • Mohri, S.; Cho, S-Y.; Endo, Y.; Fujimoto, K. Linoleate 13 (S)-lipoxygenase in sardine skin. J. Agric. Food Chem. 40:573–576; 1992.

    Article  CAS  Google Scholar 

  • Mohri, S.; Cho, S-Y.; Endo, Y.; Fujimoto, K. Lipoxygenase activity in sardine skin. Agric. Biol. Chem. 54:1889–1991; 1990.

    CAS  Google Scholar 

  • Mourente, G. In vitro metabolism of ’4C-polyunsaturated fatty acids in midgut gland and ovary cells fromPenaeus kerathurusForskál at the beginning of sexual maturation. Comp. Biochem. Physiol. 115B:255–266; 1996.

    CAS  Google Scholar 

  • Mourente, G.; Rodríguez, A. Variation in the lipid content of wild-caught females of the marine shrimpPenaeus kerathurusduring sexual maturation. Mar. Biol. 110:21–28; 1991.

    CAS  Google Scholar 

  • Muje, P.; Agren, J.J.; Lindqvist, O.V.; Hänninen, O. Fatty acid composition of vendace(Coregonus albulaL.) muscle and its plankton feed. Comp. Biochem. Physiol. 92B:7579; 1989.

    Google Scholar 

  • Nakagawa, H.; Takahara, Y.; Nematipour, G.R. Comparison of lipid properties between wild and cultured ayu. Nippon Suisan Gakkaishi 57:1965–1971; 1991.

    Article  CAS  Google Scholar 

  • Napolitano, G.E.; Ackman, R.A.; Silva-Serra, M.A. Incorporation of dietary sterols by the sea scallopPlacopecten magellanicus(Gmelin) fed on microalgae. Marine Biology 117:647–654; 1993.

    Article  CAS  Google Scholar 

  • Napolitano, G.E.; Ackman, R.G.; Parrish, C.C. Lipids and lipophilic pollutants in three species of migratory shorebirds and their food supply in Shepody Bay (Bay of Fundy, New Brunswick). Lipids 27:785–790; 1992.

    Article  CAS  Google Scholar 

  • Napolitano, G.E.; Ratnayake, W.M.N.; Ackman, R.G. Fatty acid components of larvalOstrea edulis(L.): importance of triacylglycerols as a fatty acid reserve. Comp. Biochem. Physiol. 90B:875–883; 1988.

    CAS  Google Scholar 

  • Navarro, J.C.; Bell, M.V.; Amat, F.; Sargent, J.R. The fatty acid composition of phospholipids from brine shrimpArtemiasp., eyes. Comp. Biochem. Physiol. 103B:89–91; 1992.

    CAS  Google Scholar 

  • Nettleton, J.A.; Allen, W.H.; Klatt, L.V.; Ratnayake, W.M.N.; Ackman, R.G. Nutrients and chemical residues in one-to two-pound Mississippi farm-raised channel catfish(Ictalurus punctatus).J. Food Sci. 55:954–958; 1990.

    Article  CAS  Google Scholar 

  • Nevenzel, J.C.; Gibbs, A.; Benson, A.A. Plasmalogens in the gill lipids of aquatic animals. Comp. Biochem. Physiol. 82B:293–297; 1985.

    CAS  Google Scholar 

  • Nichols, D.S.; Hart, P., Nichols, P.D., McMeekin, T.A. Enrichment of the rotiferBrachionus plicatilisfed an Antarctic bacterium containing polyunsaturated fatty acids. Aquaculture 147:115–125; 1996.

    Article  CAS  Google Scholar 

  • Nicol, J.A.C.; Arnott, H.J.; Mizuno, G.R.; Ellison, E.C.; Chipault, J.R. Occurrence of glyceryl tridocosahexaenoate in the eye of the sand troutCynoscion arenarius.Lipids 7:171–177; 1972.

    Article  PubMed  CAS  Google Scholar 

  • Ohshima, T.; Wada, S.; Koizumi, C. 1-O-Alk-l’-enyl-2-acyl and 1-O-alkyl-2-acyl glycerophospholipids in white muscle of bonitoEuthynnus pelamis(Linnaeus). Lipids 24:363–370; 1989.

    Article  CAS  Google Scholar 

  • Ohtsuru, M.; Fujii, M.; Ishinaga, M.; Kito, M. Fatty acid composition of fish (fatty acid compositions of fish caught in seas around Yamaguchi Prefecture). J. Agric. Chem. Soc. Jpn. 58:35–42; 1984.

    CAS  Google Scholar 

  • Ota, T.; Takagi, T. Changes in furan fatty acids of testis lipids of chum salmonOn-corhynchus ketaat spawning season. Nippon Suisan Gakkaishi 56:153–157; 1990.

    Article  CAS  Google Scholar 

  • Ota, T.; Takagi, T. Furan fatty acids in the lipids of kokaneeOncorhynchus nerkaf.adonis.Bull Fac. Fish. Hokkaido Univ. 34(2):88–92; 1983.

    CAS  Google Scholar 

  • Ota, T.; Chihara, Y.; Itabashi, Y.; Takagi, T. Occurrence of all-cis-6,9,12,15,18,21tetracosahexaenoic acid in flatfish lipids. Fish. Sci. 60:171–175; 1994.

    CAS  Google Scholar 

  • Otwell, W.S.; Rickards, W.L. Cultured and wild American eelsAnguila rostrata:fat content and fatty acid composition. Aquaculture 26:67–76; 1981.

    Article  CAS  Google Scholar 

  • Padrón, D.; Lindley, V.A.; Pfeiler, E. Changes in lipid composition during metamorphosis of bonefish(Albulasp.) leptocephali. Lipids 31:513–519; 1996.

    Article  PubMed  Google Scholar 

  • Paradis, M.; Ackman, R.G. Potential for employing the distribution of anomalous nonmethylene-interrupted dienoic fatty acids in several marine invertebrates as part of food web studies. Lipids 12:170–176; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Paradis, M.; Ackman, R.G. Localization of a source of marine odd chain length fatty acids. I. The amphipodPontoporeia femorata(Kroyer). Lipids 11:863–870; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Parrish, C.C. Separation of aquatic lipid classes by Chromarod thin-layer chromatography with measurement by Iatroscan flame ionization detection. Can. J. Fish. Aquat. Sci. 44:722–731; 1987.

    Article  CAS  Google Scholar 

  • Parrish, C.C.; Yang, Z.; Lau, A.; Thompson, R.J. Lipid composition ofYoldia hyperborea(Protobranchia),Nephthys ciliata(nephthyidae) andArtacama proboscidea(Terebellidae) living at sub-zero temperatures. Comp. Biochem. Physiol. 114B:59–67; 1996a.

    CAS  Google Scholar 

  • Parrish, C.C.; Bodennec, G.; Gentien, P. Determination of glycoglycerolipids by Chroma-rod thin-layer chromatography with Iatroscan flame ionization detection. J. Chromatogr. A741:91–97; 1996b.

    Google Scholar 

  • Parrish, C.C.; McKenzie, C.H.; MacDonald, B.A.; Hatfield, E.A. Seasonal studies of seston lipids in relation to microplankton species composition and scallop growth in South Broad Cove, Newfoundland. Mar. Ecol. Prog. Ser. 129:151–164; 1995.

    Article  CAS  Google Scholar 

  • Pellerin-Massicotte, J.; Martineu, P.; Desrosiers, G.; Caron, A.; Scaps, P. Seasonal variability in biochemical composition of the polychaeteNereis virens(Sacs) in two tidal flats with different geographic orientations. Comp. Biochem. Physiol. 107A:509–516; 1994.

    CAS  Google Scholar 

  • Phleger, C.F.; Grigor, M.R. Role of wax esters in determining buoyancy inHoplostethus atlanticus(Beryciformes: Trachichthyidae). Mar. Biol. 105:229–233; 1990.

    CAS  Google Scholar 

  • Pollero, R.J.; Gros, E.G.; Brenner, R.R. Sterol composition of two freshwater molluscs of genusDiplodom.Lipids 18:100–102; 1983.

    Article  CAS  Google Scholar 

  • Polvi, S.M.; Ackman, R.G.; Lall, S.P.; Saunders, R.L. Stability of lipids and omega-3 fatty acids during frozen storage of Atlantic salmon. J. Food Proc. Preserv. 15:167–181; 1991.

    Article  CAS  Google Scholar 

  • Popov, S.; Stoilov, I.; Marekov, N.; Kovachev, G.; Andreev, S.T. Sterols and their bio-synthesis in some freshwater bivalves. Lipids 16:663–669; 1981.

    Article  CAS  Google Scholar 

  • Ratnayake, W.N.; Ackman, R.G. Fatty alcohols in capelin, herring and mackerel oils and muscle lipids: 1. Fatty alcohol details linking dietary copepod fat with certain fish depot fats. Lipids 14:795–803; 1979a.

    Article  CAS  Google Scholar 

  • Ratnayake, W.N.; Ackman, R.G. Fatty alcohols in capelin, herring and mackerel oils and muscle lipids. II. A comparison of fatty acids from wax esters with those of triglycerides. Lipids 14:804–810; 1979b.

    Article  CAS  Google Scholar 

  • Ratnayake, W.M.N.; Olsson, B.; Ackman, R.G. Novel branched-chain fatty acids in certain fish oils. Lipids 24:630–637; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Kezanka, V.M.; Dembitsky, T. Identification of unusual cyclopropane monounsaturated fatty acids from the deep-water lake invertebrateAcanthogammarus grewingkii. Comp. Biochem. Physiol. 109B:407–413; 1994.

    Google Scholar 

  • Roose, P.; Smedes, F. Evaluation of the results of the QUASIMEME lipid intercomparison: the Bligh and Dyer total lipid extraction method. Mar. Pollut. Bull. 32:674–680; 1996.

    CAS  Google Scholar 

  • Saether, O.; Ellingsen, T.E.; Mohr, V. The distribution of lipid in the tissues of Antarctic krillEuphausia superba.Comp. Biochem. Physiol. 81B:609–614; 1985.

    CAS  Google Scholar 

  • Saito, H.; Murata, M. The high content of monoene fatty acids in the lipids of some midwater fishes: family Myctophidae. Lipids 31:757–763; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Sand, D.M.; Glass, R.L.; Olson, D.L.; Pike, H.M.; Schlenk, H. Metabolism of furan fatty acids in fish. Biochim. Biophys. Acta 793:429–434; 1984.

    CAS  Google Scholar 

  • Sargent, J.R. Ether-linked glycerides in marine animals. In: Ackman, R.G., ed. Marine Biogenic Lipids, Fats, and Oils, vol. 1. Boca Raton, FL: CRC Press; 1989:p. 175–197.

    Google Scholar 

  • Sargent, J.R.; McIntosh, R.; Bauermeister, A.; Blaxter, J.H.S. Assimilation of the wax esters of marine zooplankton by herring(Clupea harengus)and rainbow trout(Salmo gairdnerü).Mar. Biol. 51:203–207; 1979.

    CAS  Google Scholar 

  • Shantha, N.C.; Ackman, R.G. Advantages of total lipid hydrogenation prior to lipid class determination on Chromarods-SIII. Lipids 25:570–574; 1990.

    Article  CAS  Google Scholar 

  • Sheridan, M.A. Regulation of lipid metabolism in poikilothermic vertebrates. Comp. Biochem. Physiol. 107B:495–508; 1994.

    CAS  Google Scholar 

  • Sigurgisladóttir, S.; Pálmadóttir, H. Fatty acid composition of thirty-five Icelandic fish species. J. Am. Oil Chem. Soc. 70:1081–1087; 1993.

    Article  Google Scholar 

  • Smedes, F.; Thomasen, T.K. Evaluation of the Bligh and Dyer lipid determination method. Mar. Pollut. Bull. 32:681–688; 1996.

    Article  CAS  Google Scholar 

  • Steiner-Asiedu, M.; Julshamn, K.; Lie0.Effect of local processing methods (cooking, frying and smoking) on three fish species from Ghana: Part I. Proximate composition, fatty acids, minerals, trace elements and vitamins. Food Chem. 40:309–321; 1991.

    Article  CAS  Google Scholar 

  • Taghon, G.L.; Prahl, F.G.; Sparrow, M.; Fuller, C.M. Lipid class and glycogen content of the lugwormAbarenicola pacificain relation to age, growth rate and reproductive condition. Mar. Biol. 120:287–295; 1994.

    CAS  Google Scholar 

  • Takagi, T.; Kaneniwa, M.; Itabashi, Y.; Ackman, R.G. Fatty acids in echinoidea: unusual cis-5-olefinic acids as distinctive lipid components in sea urchins. Lipids 21:558–565; 1986.

    Article  CAS  Google Scholar 

  • Takahashi, K. A novel approach for the identification of lipid molecular species. Mem. Fac. Fish. Hokkaido Univ. 32:245–330; 1985.

    Google Scholar 

  • Takeuchi, T.; Sampekalo, J.; Nomura, T.; Watanabe, T. Lipid contents and classes in gill of masu salmonOncorhynchus masouduring the Parr-Smolt transformation. Nippon Sui-san Gakkaishi 56:1527; 1990.

    CAS  Google Scholar 

  • Takeuchi, T.; Kang, S-J.; Watanabe, T. Effects of environmental salinity of lipid classes and fatty acid composition in gills of Atlantic salmon. Nippon Suisan Gakkaishi 55:13951405; 1989.

    Google Scholar 

  • Teshima, S-I.; Kanazawa, A.; Koshio, S.; Horinouchi, K. Lipid metabolism in destalked prawnPenaeus japonicus:induced maturation and accumulation of lipids in the ovaries. Nippon Suisan Gakkaishi 54:1115–1122; 1988.

    Article  CAS  Google Scholar 

  • Tocher, D.R.; Sargent, J.R. Studies on triacylglycerol, wax ester and sterol ester hydrolases in intestinal caeca of rainbow trout(Salmo gairdneri)fed diets rich in triacylglycerols and wax esters. Comp. Biochem. Physiol. 77B:561–571; 1984.

    CAS  Google Scholar 

  • Tocher, D.R.; Bell, J.G.; Sargent, J.R. Production of eicosanoids derived from 20:4n-6 and 20:5n-3 in primary cultures of turbot(Scophthalmus maximus)brain astrocytes in response to platelet activating factor, substance P and interleukin-113. Comp. Biochem. Physiol. 115B:215–222; 1996.

    CAS  Google Scholar 

  • Tocher, D.R.; Fraser, A.J.; Sargent, J.R.; Gamble, J.C. Lipid class composition during embryonic and early larval development in Atlantic herring(Clupea harengusL.). Lipids 20:84–89; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Toonen, R.J.; Pawlik, J.R. Settlement of the tube wormHydroides dianthus(Polychaeta: Serpulidae): cues for gregarious settlement. Mar. Biol. 126:725–734; 1996.

    Article  Google Scholar 

  • Urata, K.; Takaishi, N. Ether lipids based on the glyceryl ether skeleton: present state, future potential. J. Am. Oil Chem. Soc. 73:819–830; 1996.

    Article  CAS  Google Scholar 

  • Uscian, J.M.; Stanley-Samuelson, D.W. Fatty acid compositions of phospholipids and triacylglycerols from selected terrestrial arthropods. Comp. Biochem. Physiol. 107B:371–379; 1994.

    CAS  Google Scholar 

  • Vanderploeg, H.A.; Gardner, W.S.; Parrish, C.C.; Liebig, J.R.; Cavaletto, J.F. Lipids and life-cycle strategy of a hypolimnetic copepod in Lake Michigan. Limnol. Oceanogr. 37:413–424; 1992.

    Article  CAS  Google Scholar 

  • Vaskovsky, V.E. Phospholipids. In: Ackman, R.G., ed. Marine Biogenic Lipids, Fats, and Oils, vol. 1. Boca Raton, FL: CRC Press; 1989:p. 199–242.

    Google Scholar 

  • Voss, A.; Reinhart, M.; Sprecher, H. Differences in the interconversion between 20- and 22-carbon (n-3) and (n-6) polyunsaturated fatty acids in rat liver. Biochim. Biophys. Acta 1127:33–40; 1992.

    CAS  Google Scholar 

  • Waellert, C.; Babin, P.J. Age-related, sex-related and seasonal changes of plasm lipoproteins in trout. J. Lipid Res. 35:1619–1633; 1994.

    Google Scholar 

  • Wainman, B.C.; McQueen, D.J.; Lean, D.R.S. Seasonal trends in zooplankton lipid concentration and class in freshwater lakes. J. Plankton Res. 15:1319–1332; 1993.

    Article  CAS  Google Scholar 

  • Webster, C.D.; Lovell, R.T.; Clawson, J.A. Ratio of 20:3(n-9) to 20:5(n-3) in phospholipids as an indicator of dietary essential fatty acid sufficiency in striped bassMorone saxatilisand Palmetto bassM. saxatilis x M. chrysops. J. Appl. Aquacult. 4:75–90; 1994.

    Article  Google Scholar 

  • Wirth, W.; Steffens, W.; Meinelt, T.; Steinberg, C. Significance of docosahexaenoic acid for rainbow trout(Oncorhynchus mykiss)larvae. Fett/Lipid 99:251–253; 1997.

    Article  CAS  Google Scholar 

  • Yang, Z.; Parrish, C.C.; Helleur, R.J. Automated gas chromatographic method for neutral lipid carbon number profiles in marine samples. J. Chromatogr. Sci. 34:556–568; 1996.

    CAS  Google Scholar 

  • Yazawa, K. Production of eicosapentaenoic acid from marine bacteria. Lipids 31:S-297-S-300;1996.

    Article  Google Scholar 

  • Young, N.J.; Quinlan, P.T.; Goad, L.J. Cholesteryl esters in the decapod crustaceanPenaeus monodon.Comp. Biochem. Physiol. 102B:761–768; 1992.

    CAS  Google Scholar 

  • Zhou, S.; Ackman, R.G. Interference of polar lipids with the alkalimetric determination of free fatty acid in fish lipids. J. Am. Oil Chem. Soc. 72:1019–1023; 1996.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ackman, R.G. (1999). Comparison of Lipids in Marine and Freshwater Organisms. In: Arts, M.T., Wainman, B.C. (eds) Lipids in Freshwater Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0547-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0547-0_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6813-0

  • Online ISBN: 978-1-4612-0547-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics