Supersymmetry is one of the most elegant of all symmetries, uniting bosons and fermions into a single multiplet:
$${\text{Fermions}}\; \leftrightarrow \;{\text{Bosons}}{\text{.}}$$


Light Cone Vertex Function Bosonic String Light Cone Gauge Covariant Quantization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. L. Gervais and B. Sakita Nucl. Phys. B34 632 (1971).MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    W. Siegel Phys. Lett. 128B, 397 (1983); Nucl. Phys. B263 93 (1985); Classical Quantum Gravity 2, L95 (1985).Google Scholar
  3. [3]
    L. Brink and J. H. Schwarz Phys. Lett. 100B 310 (1981).MathSciNetADSGoogle Scholar
  4. [4]
    P. Ramond Phys. Rev. D3 2415 (1971).MathSciNetADSGoogle Scholar
  5. [5]
    A. Neveu and J. H. Schwarz Nucl. Phys. B31 86 (1971).ADSCrossRefGoogle Scholar
  6. [6]
    A. Neveu, J. H. Schwarz, and C. B. Thorn Nucl. Phys. B31 529 (1971).Google Scholar
  7. [7]
    J. Wess and B. Zumino Nucl. Phys. B70 39 (1974).MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    See also Y. A. Gol’fand and E. P. Likhtman JETP Lett. 13,323 (1971); D. V. Volkov and V. P. Akulov, JETP Lett. 16 621 (1972) (English, p. 438).Google Scholar
  9. [9]
    M. A. Virasoro, unpublished.Google Scholar
  10. [10]
    Y. Aharonov, A. Casher, and L. Susskind Phys. Rev. D5 988 (1972).ADSGoogle Scholar
  11. [11]
    L. Brink, P. Di Vecchia, and P. Howe Phys. Lett. 65B 471 (1976).ADSGoogle Scholar
  12. [12]
    S. Deser and B. Zumino Phys. Leu. 65B 369 (1976).MathSciNetADSGoogle Scholar
  13. [13]
    For an earlier attempt, see Y. Iwasaki and K. Kikkawa Phys. Rev. DB 440 (1973).Google Scholar
  14. [14]
    N. Ohta Phys. Rev. D33 1681 (1986).ADSGoogle Scholar
  15. [15]
    M. Ito, T. Morozumi, S. Nojiri, and S. Uehara Progr Theoret. Phys. 75 934 (1986).MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    J. Schwarz Suppl. Progr Theoret. Phys. 86 70 (1986).ADSCrossRefGoogle Scholar
  17. [17]
    F. Gliozzi, J. Scherk, and D. Olive Nucl. Phys. B122 253 (1977).ADSCrossRefGoogle Scholar
  18. [18]
    C. B. Thorn Phys. Rev. D4 1112 (1971).ADSGoogle Scholar
  19. [19]
    L. Brink, D. Olive, C. Rebbi, and J. Scherk Phys. Leu. 45B 379 (1973).ADSGoogle Scholar
  20. [20]
    S. Mandelstam Phys. Leu. 46B 447 (1973).ADSGoogle Scholar
  21. [21]
    J. H. Schwarz and C. C. Wu Phys. Lett. 47B 453 (1973).ADSGoogle Scholar
  22. [22]
    D. Bruce, E. Corrigan, and D. Olive Nucl. Phys. B95 427 (1975).ADSCrossRefGoogle Scholar
  23. [23]
    M. Green and J. H. Schwarz Phys. Lett. 136B 367 (1984).ADSGoogle Scholar
  24. [24]
    M. Green and J. H. Schwarz Nucl. Phys. B198 252, 441 (1982).ADSCrossRefGoogle Scholar
  25. [25]
    T. Hori and K. Kamimura Progr Theoret. Phys. 73 476 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  26. [26]
    M. Kaku and J. Lykken, in Symposium on Anomalies Geometry and Topology (edited by W. A. Bardeen and A. R. White), World Scientific, Singapore, 1986.Google Scholar
  27. [27]
    See also I. Bengtsson and M. Cederwall, Goteborg preprint 84–21.Google Scholar
  28. [28]
    T. J. Allen, Cal Tech preprint CALT-68–1373.Google Scholar
  29. [29]
    T. Hori, K. Kamimura, and M. Tatewaki Phys. Leu. 185B 367 (1987).MathSciNetADSGoogle Scholar
  30. [30]
    C. CrnkovicPhys. Lett. 173B 429 (1986).MathSciNetADSGoogle Scholar
  31. [31]
    R. E. Kallosh Pis ‘ma JETPh 45365 (1987);Phys. Lett. 195B 369 (1987).Google Scholar
  32. [32]
    I. A. Batalin, R. E. Kallosh, and A. Van Proeyen, KUL—TF—87/17.Google Scholar
  33. [33]
    N. Marcus and J. H. Schwarz Phys. Leu. 115B 111 (1982).MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Michio Kaku
    • 1
  1. 1.Department of PhysicsCity College of the City University of New YorkNew YorkUSA

Personalised recommendations