Solitons, D-Branes, and Black Holes

  • Michio Kaku
Part of the Graduate Texts in Contemporary Physics book series (GTCP)

Abstract

We have seen that these BPS saturated states are essential to prove the duality relationships that we have conjectured. The important point is that it is possible to construct all of thesep-brane states as solitons, solitonlike solutions (called D-branes), or as supersymmetric actions. Solitons are a powerful way in which to probe the nonperturbative structure of a theory, so it is not surprising that solitons and solitonlike objects will play an important part in filling out the BPS states of the theory. Even if we start with a theory which consists purely of strings, we are forced to admit the presence of these membrane states because they are solutions to the classical equations of motion.

Keywords

Entropy Covariance Soliton Dition Ghost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. J. Duff and K. Stelle Phys. Lett. B253 113 (1991).MathSciNetADSGoogle Scholar
  2. [2]
    R. Gueven Phys. Lett. B276 49 (1992).ADSGoogle Scholar
  3. [3]
    For a review, see: M. J. Duff, R. R. Khuri, and J. X. Lu Phys. Rep. 259 213 (1995).Google Scholar
  4. [4]
    A. Achucarro, J. Evans, P. Townsend, and D. Wiltshir Phys. Lett. 198B 441 (1987).ADSGoogle Scholar
  5. [5]
    B. E. Bergshoeff, E. Sezgin, and P. K. Townsend Phys. Lett. B189 75 (1987); Ann. Phys. 185 300 (1988).Google Scholar
  6. [6]
    M. AganaicJ.Park, C. Popescu, and J.H.Schwarz, hep-th/9701166.Google Scholar
  7. [7]
    P. Pasti, D. Sorokin, and M. Tonin Phys. Rev. D52 4277 (1995); hepth/9701149.MathSciNetADSGoogle Scholar
  8. [8]
    J. Dai, R. G. Leigh, andJ.Polchinski Mod. Phys. A4 2073 (1989).MathSciNetADSGoogle Scholar
  9. [9]
    R. G. Leigh Mod. Phys. Lett. A4 2767 (1989).MathSciNetADSGoogle Scholar
  10. [10]
    P. K. Townsend Phys. Lett. B373 68 (1996).MathSciNetADSGoogle Scholar
  11. [11]
    C. Schmidhuber Nucl. Phys. B467 146 (1996).MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    E. Witten, Nuel. Phys. B460 335 (1995).MathSciNetADSGoogle Scholar
  13. [13]
    T. Banks, W. Fischler, S. H. Senker and L. Susskind Phys. Rev. D55 5112 (1997).ADSGoogle Scholar
  14. [14]
    For a review of matrix models, see: A. Bilai, hep-th/9710136.Google Scholar
  15. [15]
    U.H.Danielsson, G. Ferretti, and B. Sundborg, hep-th/9603081 (B.8).Google Scholar
  16. [16]
    D. Kabat and P. Pouliot, hep-th/9603127 (B.9)Google Scholar
  17. [17]
    M. R.Douglas, D. KabatP.Pouliot, and S. Shenker, hep-th/9608024.Google Scholar
  18. [18]
    K. Becker and M. Becker, hep-th/9705091.Google Scholar
  19. [19]
    B. de Wit, M. Luscher, and H. Nicolai Nuci. Phys. B305[FS23] 545 (1988).ADSCrossRefGoogle Scholar
  20. [20]
    I. J. Bekenstein Nuov. Cimento Lett. 4 737 (1972); Phys. Rev. D72333 91973); Phys. Rev. D9 3292 (1974); Phys. Rev. D12 3077 (1975).Google Scholar
  21. [21]
    S. Hawking Nature 248 30 (1974); Comm. Math. Phys. 43 199 (1975); Phys. Rev. D13 191 (1976).Google Scholar
  22. [22]
    C. Vafa and A. Strominger Phys. Lett. B383 44 (1996).Google Scholar
  23. [23]
    G. Horowitz, gr-gc/960405I.Google Scholar
  24. [24]
    J. M. Maldacena and A. Strominger, hep-th/9603060.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Michio Kaku
    • 1
  1. 1.Department of PhysicsCity College of the City University of New YorkNew YorkUSA

Personalised recommendations