Skip to main content

The Acoustic Periphery of Amphibians: Anatomy and Physiology

  • Chapter
Comparative Hearing: Fish and Amphibians

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 11))

Abstract

According to current classification, the living amphibians are distributed among three orders—Caudata (newts and salamanders, or urodeles), Gymnophiona (caecilians), and Anura (frogs and toads)—which often are grouped in a single subclass—Lissamphibia. A current summary of the biology of the Lissamphibia is found in Duellman and Trueb (1994). Among the morphological features common to the three orders of Lissamphibia, but lacking in fish, are four evidently related to acoustic sensing (see Bolt and Lombard 1992; Fritzsch 1992 for recent reviews): (1) a hole (the oval window) in the bony wall of the otic capsule; (2) the insertion of one or two movable skeletal elements, the columella and the operculum, into that hole from its lateral side; (3) a periotic labyrinth, part of which projects into the hole from its medial side; and (4) two extraordinarily thin membranes (contact membranes), comprising locally fused epithelial linings of the periotic and otic labyrinths, each contact membrane forming part of the wall of a separate papillar recess in the otic labyrinth. The two papillae themselves may be homologues of two sensors found in fish—the macula neglecta and the basilar papilla. In amphibians, the putative homologue of the macula neglecta is called the amphibian papilla. Among fish, the basilar papilla has been found only in the coelacanth fish, Latimeria (Fritzsch 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas PJ (1981) Auditory-nerve fiber responses to tones in a noise masker. Hear Res 5:69–80.

    PubMed  CAS  Google Scholar 

  • Aertsen AMHJ, Vlaming MSMG, Eggermont JJ, Johannesma PIM (1986) Directional hearing in the grassfrog (Rana temporaria L.). II. Acoustics and modelling of the auditory periphery. Hear Res 21:17–40.

    PubMed  CAS  Google Scholar 

  • Alfs B, Schneider H (1973) Vergleichend-anatomische Untersuchungen am Labyrinth zentraleuropäischer Froschlurch-Arten (Anura). Z Morph Ókol Tiere 76:129–143.

    Google Scholar 

  • Anderson DJ, Rose JE, Hind JE, Brugge JF (1970) Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J Acoust Soc Am 49:1131–1139.

    Google Scholar 

  • Ashcroft DW, Hallpike CS (1934) Action potentials in the saccular nerve of the frog. J Physiol (Lond) 81:23P–24P.

    Google Scholar 

  • Assad JA, Corey DP (1992) An active motor model for adaptation by vertebrate hair cells. J Neurosci 12:3291–3309.

    PubMed  CAS  Google Scholar 

  • Assad JA, Hacohen N, Corey DP (1989) Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc Natl Acad Sci USA 86:2918–2922.

    PubMed  CAS  Google Scholar 

  • Assad JA, Shepherd GMG, Corey DP (1991) Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7:985–994.

    PubMed  CAS  Google Scholar 

  • Baird IL (1974a) Anatomical features of the inner ear in submammalian vertebrates. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, vol. 1: Auditory System. Berlin: Springer-Verlag, pp. 159–212.

    Google Scholar 

  • Baird IL (1974b) Some aspects of the comparative anatomy and evolution of the inner ear in submammalian vertebrates. Brain Behav Evol 10:11–36.

    CAS  Google Scholar 

  • Baird RA, Lewis ER (1986) Correspondences between afferent innervation patterns and response dynamics in the bullfrog utricle and saccule. Brain Res 369:48–64.

    PubMed  CAS  Google Scholar 

  • Baird RA, Steyger PS, Schuff NR (1996) Hair cell regeneration in the bullfrog vestibular otolith organs. Ann NY Acad Sci 781:59–70.

    PubMed  CAS  Google Scholar 

  • Békésy G von (1960) Experiments in Hearing. Weyer EG (ed). New York: McGraw-Hill.

    Google Scholar 

  • Benedix JH Jr, Pedemonte M, Yelluti R, Narins PM (1994) Temperature dependence of two-tone rate suppression in the northern leopard frog, Rana pipiens pipiens. J Acoust Soc Am 96:2738–2745.

    PubMed  Google Scholar 

  • Benser ME, Marquis RE, Hudspeth AJ (1996) Rapid, active hair bundle move-ments in hair cells from the bullfrog’s sacculus. J Neurosci 16:5629–5643.

    PubMed  CAS  Google Scholar 

  • Bergeijk WA van (1957) Observations on models of the basilar papilla of the frog’sear. J Acoust Soc Am 29:1159–1162.

    Google Scholar 

  • Bergeijk WA van (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic Press, pp. 1–49.

    Google Scholar 

  • Bergeijk WA van, Witschi E (1957) The basilar papilla of the anuran ear. Acta Anat 30:81–91.

    Google Scholar 

  • Bodnar DA, Capranica RR (1994) Encoding of phase spectra by the peripheral auditory system of the bullfrog. J Comp Physiol 174:157–171.

    CAS  Google Scholar 

  • Boer E de, de Jongh HR (1978) On cochlear encoding: potentialities and limitations of the reverse-correlation technique. J Acoust Soc Am 63:115–135.

    PubMed  Google Scholar 

  • Bohne BA, Carr CD (1985) Morphometric analysis of hair cells in the chinchilla cochlea. J Acoust Soc Am 77:153–158.

    PubMed  CAS  Google Scholar 

  • Bolt JR, Lombard EL (1992) Nature and quality of the fossil evidence for otic evolution in early tetrapods. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 377–403.

    Google Scholar 

  • Boord RL, Grochow LB, Frishkopf LS (1970) Organization of the posterior ramus and ganglion of the VIIIth cranial nerve of the bullfrog Rana catesbeiana. MIT Res Lab Electr Quart Prog Rep 99:180–182.

    Google Scholar 

  • Brand DJ (1956) On the cranial morphology of Scolecomorphus uluguruensis (Barbour and Loveridge). Ann Univ Stellenbosch 32(A):1–25.

    Google Scholar 

  • Burlet HM de (1928) Über die Papilla neglecta. Anat Anz 66:199–209.

    Google Scholar 

  • Burlet HM de (1934a) Zur vergleichenden Anatomie und Physiologie des perilymphatischen Raumes. Acta Otolaryngol 13:153–187.

    Google Scholar 

  • Burlet HM de (1934b) Vergleichende Anatomie des statoakustichen Organs. In: Bolk L, Göppoert E, Kallius E, Lubosch W (eds) Handbuch der Vergleichenden Anatomie der Wirbeltiere, 2/2. Berlin: Urban and Schwarzenberg, pp. 1293–1432.

    Google Scholar 

  • Burlet HM de (1935) Über endolymphatische und perilymphatische Sinnesendstellen. Acta Otolaryngol 22:287–305.

    Google Scholar 

  • Capranica RR (1965) The evoked vocal responses of the bullfrog. Massachusetts Inst Tech Res Monog 33:1–106.

    Google Scholar 

  • Capranica RR (1976) Morphology and physiology of the auditory system. In: Llinas R, Precht W (eds) Frog Neurobiology. Berlin: Springer-Verlag, pp. 551–575.

    Google Scholar 

  • Capranica RR, Frishkopf LS, Nevo E (1973) Encoding of geographic dialects in the auditory system of the cricket frog. Science 182:1272–1275.

    PubMed  CAS  Google Scholar 

  • Capranica RR, Moffat AJM (1974a) Excitation, inhibition, and disinhibition in the inner ear of the toad (Bufo). J Acoust Soc Am 55:480.

    Google Scholar 

  • Capranica RR, Moffat AJM (1974b) Frequency sensitivity of auditory fibers in the eighth nerve of the spadefoot toad, Scaphiopus couchi. J Acoust Soc Am 55:S85.

    Google Scholar 

  • Capranica RR, Moffat AJM (1975) Selectivity of peripheral auditory system of spadefoot toads. J Comp Physiol 100:231–249.

    Google Scholar 

  • Capranica RR, Moffat AJM (1980) Nonlinear properties of the peripheral auditory system of anurans. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 139–165.

    Google Scholar 

  • Carlström D (1963) A crystallographic study of vertebrate otoliths. Biol Bull 125:441–463.

    Google Scholar 

  • Carlström D, Engström H (1955) The ultrastructure of statoconia. Acta Otolaryngol 45:14–18.

    PubMed  Google Scholar 

  • Carney LH, Yin TCT (1988) Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model. J Neurophysiol 60:1653–1677.

    PubMed  CAS  Google Scholar 

  • Caston J, Precht W, Blanks RHI (1977) Response characteristics of frog’s lagena afferents to natural stimulation. J Comp Physiol 118:273–289.

    Google Scholar 

  • Cazin L, Lannou J (1975) Response du saccule à la stimulation vibratoire directe de la macule, chez la grenouille. C R Soc Biol (Paris) 169:1067–1071.

    CAS  Google Scholar 

  • Christensen-Dalsgaard J, Jorgensen MB (1996a) Sound and vibration sensitivity of VIIIth nerve fibers in the grassfrog Rana temporaria. J Comp Physiol 179:437–445.

    CAS  Google Scholar 

  • Christensen-Dalsgaard J, Jorgensen MB (1996b) One-tone suppression in the frog auditory nerve. J Acoust Soc Am 100:451–457.

    CAS  Google Scholar 

  • Christensen-Dalsgaard J, Narins PM (1993) Sound and vibration sensitivity of VIIIth nerve fibers in the frogs Leptodactylus albilabris and Rana pipiens pipiens. J Comp Physiol 172:653–662.

    CAS  Google Scholar 

  • Chung S-H, Pettigrew A, Anson M (1981) Hearing in the frog: dynamics of the middle ear. Proc R Soc Lond [B] 212:459–485.

    Google Scholar 

  • Citron L (1969) Observations on a case of objective tinnitus. Excerpta Medica Int Conf Ser 189:91.

    Google Scholar 

  • Corey DP, Hacohen N, Huang PL, Assad JA (1989) Hair cell stereocilia bend at their bases and touch at their tips. Soc Neurosci Abstr 15:208.

    Google Scholar 

  • Cortopassi KA, Lewis ER (1995) Tuning properties of acoustic and equilibrium axons: a comparison of frequency response curves in the bullfrog lagena. In: Burrows M, Matheson T, Newland PL, Shuppe H (eds) Nervous Systems and Behaviour. New York: Georg Thieme Verlag, p. 344.

    Google Scholar 

  • Cortopassi KA, Lewis ER (1996) High-frequency tuning properties of bullfrog lagenar vestibular afferent fibers. J Vestib Res 6:105–119.

    PubMed  CAS  Google Scholar 

  • Corwin JT (1977) Morphology of the macula neglecta in sharks of the genus Carcharhinus. J Morphol 152:341–362.

    PubMed  CAS  Google Scholar 

  • Corwin JT (1985) Perpetual production of hair cells and maturational changes in hair-cell ultrastructure accompany postembryonic growth in an amphibian ear. Proc Natl Acad Sci USA 82:3911–3915.

    PubMed  CAS  Google Scholar 

  • Corwin JT, Warchol ME, Kelley MT (1993) Hair cell development. Curr Opin Neurobiol 3:32–37.

    PubMed  CAS  Google Scholar 

  • Costalupes JA, Young ED, Gibson DJ (1984) Effects of continuous noise backgrounds on rate response of auditory-nerve fibers in cat. J Neurophysiol 51:1326–1344.

    PubMed  CAS  Google Scholar 

  • Cotanche DA, Lee KH (1994) Regeneration of hair cells in the vestibulocochlear system of birds and mammals. Curr Biol 4:509–513.

    CAS  Google Scholar 

  • Davis H (1965) A model for transducer action in the cochlea. Cold Spring Harb Symp Quant Biol 30:181–190.

    PubMed  CAS  Google Scholar 

  • Dijk P van, Lewis ER, Wit HP (1990) Temperature effects on auditory nerve fiber response in the American bullfrog. Hear Res 44:231–240.

    PubMed  Google Scholar 

  • Dijk P van, Wit HP, Segenhout JM (1989) Spontaneous otoacoustic emissions in the European edible frog (Rana esculenta): spectral details and temperature dependence. Hear Res 42:273–282.

    PubMed  Google Scholar 

  • Dijk P van, Narins PM, Wang J (1996) Spontaneous otoacoustic emissions in seven frog species. Hear Res 101:102–112.

    PubMed  Google Scholar 

  • Duellman WE, Trueb L (1994) Biology of Amphibians. Baltimore: Johns Hopkins. Dunia R, Narins PM (1989) Temporal resolution in frog auditory-nerve fibers. J Acoust Soc Am 85:1630–1638.

    Google Scholar 

  • Dunn RF (1978) Nerve fibers of the eighth nerve and their distribution to the sensory nerves of the inner ear in the bullfrog. J Comp Neurol 182:621–636.

    PubMed  CAS  Google Scholar 

  • Dunn RF (1980) Reciprocal synapses between hair cells and first order afferent dendrites in the crista ampullaris of the bullfrog. J Comp Neurol 193:255–264.

    PubMed  CAS  Google Scholar 

  • Eatock RA, Corey DP, Hudspeth AJ (1987) Adaptation of mechanoelectrical trans-duction in hair cells of the bullfrog’s sacculus. J Neurosci 7:2821–2836.

    PubMed  CAS  Google Scholar 

  • Egert D (1993) The Physiological Basis of Tuning in the Bullfrog Sacculus (doctoral dissertation). Berkeley: University of California.

    Google Scholar 

  • Egert D, Lewis ER (1995) Temperature-dependence of saccular nerve fiber response in the North American bullfrog. Hear Res 84:72–80.

    PubMed  CAS  Google Scholar 

  • Eggermont JJ (1988) Mechanisms of sound localization in anurans. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 307–336.

    Google Scholar 

  • Ehret G, Capranica RR (1980) Masking patterns and filter characteristics of auditory nerve fibers in the green treefrog (Hyla cinerea). J Comp Physiol 141:112.

    Google Scholar 

  • Ehret G, Moffat AJM, Capranica RR (1983) Two-tone suppression in auditory nerve fibers of the green treefrog (Hyla cinerea). J Acoust Soc Am 73:2093–2095.

    PubMed  CAS  Google Scholar 

  • Ehret G, Tautz J, Schmitz B, Narins PM (1990) Hearing through the lungs: lung-eardrum transmission of sound in the frog Eleutherodactylus coqui. Naturwissenschaften 77:192–194.

    PubMed  CAS  Google Scholar 

  • Ehret G, Keilworth E, Kamada T (1994) The lung-eardrum pathway in three treefrog and four dendrobatid frog species: some properties of sound transmission. J Exp Biol 195:329–343.

    PubMed  CAS  Google Scholar 

  • Evans BN (1988) Motile Response Patterns and Ultrastructural Observations of the Isolated Outer Hair Cell (doctoral dissertation). Houston: University of Texas Health Science Center.

    Google Scholar 

  • Evans EF (1977) Frequency selectivity at high signal levels of single units in cochlear nerve and nucleus. In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. London: Academic Press, pp. 185–196.

    Google Scholar 

  • Feng AS (1980) Directional characteristics of the acoustic receiver of the leopard frog (Rana pipiens): a study of the eighth nerve auditory responses. J Acoust Soc Am 68:1107–1114.

    PubMed  CAS  Google Scholar 

  • Feng AS, Gerhardt HC, Capranica RR (1976) Sound localization behavior of the green treefrog (Hyla cinerea) and barking treefrog (H. gratiosa). J Comp Physiol 107:241–252.

    Google Scholar 

  • Feng AS, Narins PM, Capranica RR (1975) Three populations of primary auditory fibers in the bullfrog (Rana catesbeiana): their peripheral origins and frequency sensitivities. J Comp Physiol 100:221–229.

    Google Scholar 

  • Feng AS, Shofner WP (1981) Peripheral basis of sound localization in anurans. Acoustic properties of the frog’s ear. Hear Res 5:201–216.

    PubMed  CAS  Google Scholar 

  • Fermin CD, Lovett AE (1989) The sensory epithelia and gelatinous membranes of the chick inner ear. Assoc Res Otolaryngol Abstr 12:324.

    Google Scholar 

  • Fermin CD, Igarashi M, Yoshihara T (1987) Ultrastructural changes of statoconia after segmentation of the otolithic membrane. Hear Res 28:23–34.

    PubMed  CAS  Google Scholar 

  • Flock A, Flock B (1966) Ultrastructure of the amphibian papilla in the bullfrog. J Acoust Soc Am 40:1262.

    Google Scholar 

  • Frishkopf LS, Capranica RR, Goldstein MH Jr (1968) Neural coding in the bullfrog’s auditory system—a teleological approach. Proc Inst Elec Electron Engr 56:969–980.

    Google Scholar 

  • Frishkopf LS, Flock (1974) Ultrastructure of the basilar papilla, an auditory organ in the bullfrog. Acta Otolaryngol 77:176–184.

    PubMed  CAS  Google Scholar 

  • Frishkopf LS, Geisler CD (1966) Peripheral origin of auditory responses recorded from the eighth nerve of the bullfrog. J Acoust Soc Am 40:469–472.

    Google Scholar 

  • Frishkopf LS, Goldstein MH Jr (1963) Responses to acoustic stimuli from single units in the eighth nerve of the bullfrog. J Acoust Soc Am 35:1219–1228.

    Google Scholar 

  • Fritzsch B (1987) The inner ear of the ceolacanth fish Latimeria has tetrapod affinities. Nature 327:331–333.

    Google Scholar 

  • Fritzsch B (1992) The water-to-land transition: evolution of the tetrapod basilar papilla, middle ear, and auditory nuclei. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 351–375.

    Google Scholar 

  • Fritzsch B, Wake MH (1988) The inner ear of gymnophione amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system. Zoomorphology 108:210–217.

    Google Scholar 

  • Geisler CD, Bergeijk WA van, Frishkopf LS (1964) The inner ear of the bullfrog. J Morphol 114:43–58.

    PubMed  CAS  Google Scholar 

  • Gerhardt HC, Rheinlaender J (1980) Accuracy of sound localization in a miniature dendrobatid frog. Naturwissenschaften 67:362–363.

    Google Scholar 

  • Gerhardt HC, Rheinlaender J (1982) Localization of an elevated sound source by the green tree frog. Science 217:663–664.

    Google Scholar 

  • Gold T (1948) Hearing II: the physical basis of the action of the cochlea. Proc Roy Soc B 135:492–498.

    Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636.

    PubMed  CAS  Google Scholar 

  • Goldstein JL, Kiang NYS (1968) Neural correlates of the aural combination tone 2f1-f2. Proc Inst Elec Electron Engr 56:981–992.

    Google Scholar 

  • Goldstein MH, Frishkopf LS, Geisler CD (1962) Representation of sounds by response of single units in the eighth nerve of the bullfrog. J Acoust Soc Am 34:734.

    Google Scholar 

  • Harrison HS (1902) On the perilymphatic spaces of the amphibian ear. Int Meschr Anat Physiol 19:222–261.

    Google Scholar 

  • Henry KR, Lewis ER (1992) One-tone suppression in the cochlear nerve of the gerbil. Hear Res 63:1–6.

    PubMed  CAS  Google Scholar 

  • Henson OW Jr (1974) Comparative anatomy of the middle ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, vol. 1: Auditory System. Berlin: Springer-Verlag, pp. 39–110.

    Google Scholar 

  • Hetherington TE (1988) Metamorphic changes in the middle ear. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley-Interscience, pp. 339–357.

    Google Scholar 

  • Hetherington TE, Jaslow AP, Lombard RE (1986) Comparative morphology of the amphibian opercularis system, I. General design features and functional interpretation. J Morphol 190:43–61.

    PubMed  CAS  Google Scholar 

  • Hillery CM, Narins PM (1984) Neurophysiological evidence for a traveling wave in the amphibian ear. Science 225:1037–1039.

    PubMed  CAS  Google Scholar 

  • Hillery CM, Narins PM (1987) Frequency and time domain comparison of low-frequency auditory fiber responses in two anuran amphibians. Hear Res 25:233–248.

    PubMed  CAS  Google Scholar 

  • Hillman DE (1969) New ultrastructural findings regarding a vestibular ciliary apparatus and its possible functional signficance. Brain Res 13:407–412.

    PubMed  CAS  Google Scholar 

  • Hillman DE (1976) Morphology of the peripheral and central vestibular systems. In: Llinás R, Precht W (eds) Frog Neurobiology. Berlin: Springer-Verlag, pp. 452–480.

    Google Scholar 

  • Hillman DE, Lewis ER (1971) Morphological basis for a mechanical linkage in otolithic receptor transduction. Science 174:416–419.

    PubMed  CAS  Google Scholar 

  • Honrubia V, Strelioff D, Sitko S (1976) Physiological basis of cochlear transduction and sensitivity. Ann Otol Rhinol Laryngol 85:697–710.

    PubMed  CAS  Google Scholar 

  • Houseley GD, Norris CH, Guth PS (1989) Electrophysiological properties and morphology of hair cells isolated from the semicircular canal of the frog. Hear Res 38:259–276.

    Google Scholar 

  • Howard J, Hudspeth AJ (1987) Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair cell. Proc Natl Acad Sci USA 84:3064–3068.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ (1982) Extracellular current flow and the site of transduction by vertebrate hair cells. J Neurosci 2:1–10.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Jacobs R (1979) Stereocilia mediate transduction in vertebrate hair cells. Proc Natl Acad Sci USA 76:1506–1509.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Lewis RS (1988) Kinetic analysis of voltage-and ion-dependent conductances in saccular hair cells of the bullfrog, Rana catesbeiana. J Physiol 400:237–274.

    PubMed  CAS  Google Scholar 

  • Iurato S (1962) Submicroscopic structure of the membranous labyrinth III. The supporting structure of Corti’s organ (basilar membrane, limbus spiralis and spiral ligament). Z Zellforsch 56:40–96.

    CAS  Google Scholar 

  • Jaramillo F, Hudspeth AJ (1991) Localization of the hair cell’s transduction channels at the hair bundle’s top by iontophoretic application of a channel blocker. Neuron 7:409–420.

    PubMed  CAS  Google Scholar 

  • Jaslow AP, Hetherington TE, Lombard RE (1988) Structure and function of the amphibian middle ear. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley-Interscience, pp. 69–91.

    Google Scholar 

  • Jorgensen JM (1981) On a possible hair cell turnover in the inner ear of the caecilian Ichthyophis glutinosus (Amphibia: Gymnophiona). Acta Zool 62:171–186.

    Google Scholar 

  • Jorgensen MB, Christensen-Dalsgaard J (1991) Peripheral origins and functional characteristics of vibration-sensitive Vlllth nerve fibers in the frog Rana temporaria. J Comp Physiol 169:341–347.

    Google Scholar 

  • Jorgensen MB, Gerhardt HC (1991) Directional hearing in the gray tree frog Hyla versicolor: eardrum vibrations and phonotaxis. J Comp Physiol 169:177–183.

    CAS  Google Scholar 

  • Jorgensen MB, Schmitz B, Christensen-Dalsgaard J (1991) Biophysics of directional hearing in the frog Eleutherodactylus coqui. J Comp Physiol 168:223–232.

    Google Scholar 

  • Katsuki Y, Suga N, Kanno Y (1962) Neural mechanism of the peripheral and central auditory system in monkeys. J Acoust Soc Am 34:1396–1410.

    Google Scholar 

  • Kemp DT (1979) Evidence of mechanical nonlinearity and frequency-selective wave amplification in the cochlea. Arch Otorhinolaryngol 244:37–45.

    Google Scholar 

  • Kemp DT, Martin JA (1976) Active resonance systems in audition. Int Congr Audiol Abstr 13:64–65.

    Google Scholar 

  • Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge patterns of single fibers in the cat’s auditory nerve. Massachusetts Inst Tech Res Monog 35.

    Google Scholar 

  • Kingsbury BD, Reed HD (1909) The columella auris in amphibia. J Morphol 20:549–628.

    Google Scholar 

  • Klump G, Gerhardt HC (1989) Sound localization in the barking treefrog. Naturwissenschaften 76:35–37.

    PubMed  CAS  Google Scholar 

  • Koyama H, Lewis ER, Leverenz EL, Baird RA (1982) Acute seismic sensitivity in the bullfrog ear. Brain Res 250:168–172.

    PubMed  CAS  Google Scholar 

  • Kronester-Frei A (1978) Ultrastructure of the different zones of the tectorial membrane. Cell Tissue Res 193:11–23.

    PubMed  CAS  Google Scholar 

  • Lawson DP (1993) The reptiles and amphibians of the Korup National Park Project, Cameroon. Herp Nat Hist 1:27–90.

    Google Scholar 

  • Lewis ER (1976) Surface morphology of the bullfrog amphibian papilla. Brain Behav Evol 13:196–215.

    PubMed  CAS  Google Scholar 

  • Lewis ER (1977) Comparative scanning electron microscopy study of the anuran basilar papilla. Ann Proc Electron Microsc Soc Am 35:632–633.

    Google Scholar 

  • Lewis ER (1978) Comparative studies of the anuran auditory papillae. Scan Electr Microsc 1978(II):633–642.

    Google Scholar 

  • Lewis ER (1981a) Evolution of inner-ear auditory apparatus in the frog. Brain Res 219:149–155.

    CAS  Google Scholar 

  • Lewis ER (1981b) Suggested evolution of tonotopic organization in the frog amphibian papilla. Neurosci Lett 21:131–136.

    CAS  Google Scholar 

  • Lewis ER (1984) On the frog amphibian papilla. Scan Electr Microsc 1984(IV):1899–1913.

    Google Scholar 

  • Lewis ER (1986) Adaptation, suppression and tuning in amphibian acoustical fibers. In: Moore BCJ, Patterson RD (eds) Auditory Frequency Selectivity. New York: Plenum, pp. 129–136.

    Google Scholar 

  • Lewis ER (1988) Tuning in the bullfrog ear. Biophys J 53:441–447.

    PubMed  CAS  Google Scholar 

  • Lewis ER (1992) Convergence of design in vertebrate acoustic sensors. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 163–184.

    Google Scholar 

  • Lewis ER (1996) A brief introduction to network theory. In: Berger SA, Goldsmith W, Lewis ER (eds) Introduction to Bioengineering. Oxford: Oxford University Press, pp. 261–338.

    Google Scholar 

  • Lewis ER, Henry KR (1994) Dynamic changes in tuning in the gerbil cochlea. Hear Res 79:183–189.

    PubMed  CAS  Google Scholar 

  • Lewis ER, Henry KR (1995) Nonlinear effects of noise on phase-locked cochlear-nerve responses to sinusoidal stimuli. Hear Res 92:1–16.

    PubMed  CAS  Google Scholar 

  • Lewis ER, Leverenz EL (1979) Direct evidence for an auditory place mechanism in the frog amphibian papilla. Soc Neurosci Abstr 5:25.

    Google Scholar 

  • Lewis ER, Leverenz EL (1983) Morphological basis for tonotopy in the anuran amphibian papilla. Scan Electr Microsc 1983:189–200.

    Google Scholar 

  • Lewis ER, Li CW (1973) Evidence concerning the morphogenesis of saccular receptors in the bullfrog (Rana catesbeiana). J Morphol 139:351–361.

    PubMed  CAS  Google Scholar 

  • Lewis ER, Li CW (1975) Hair cell types and distributions in the otolithic and auditory organs of the bullfrog. Brain Res 83:35–50.

    Google Scholar 

  • Lewis ER, Lombard RE (1988) The amphibian inner ear. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 93–123.

    Google Scholar 

  • Lewis ER, Nemanic P (1972) Scanning electron microscope observations of saccular ultrastructure in the mudpuppy (Necturus maculosus). Z Zellforsch 123:441–457.

    PubMed  CAS  Google Scholar 

  • Lewis ER, Baird RA, Leverenz EL, Koyama H (1982) Inner ear: dye injection reveals peripheral origins of specific sensitivities. Science 215:1641–1643.

    PubMed  CAS  Google Scholar 

  • Lewis ER, Leverenz EL, Koyama H (1982) The tonotopic organization of the bullfrog amphibian papilla, an auditory organ lacking a basilar membrane. J Comp Physiol 145:437–445.

    Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The Vertebrate Inner Ear. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Lewis ER, Sneary M, Yu XY (1990) Further evidence for tuning mechanisms of high dynamic order in lower vertebrates. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing. Berlin: Springer-Verlag, pp. 139–147.

    Google Scholar 

  • Lewis ER, Hecht EI, Narins PM (1992) Diversity of form in the amphibian papilla of Puerto Rican frogs. J Comp Physiol 171:412–435.

    Google Scholar 

  • Lewis RS, Hudspeth AJ (1983) Frequency tuning and ionic conductance in hair cells of the bullfrog sacculus. In: Klinke R, Hartmann R (eds) Hearing—Physiological Bases and Psychophysics. Berlin: Springer-Verlag, pp. 17–24.

    Google Scholar 

  • Li CW, Lewis ER (1974) Morphogenesis of auditory receptor epithelia in the bullfrog. In: Johari O, Corvin I (eds) Scanning Electron Microscopy, vol. III. Chicago: IIT Research Institute, pp. 791–798.

    Google Scholar 

  • Li CW, Lewis ER (1979) Structure and development of vestibular hair cells in the larval bullfrog. Ann Otol Rhinol Laryngol 88:427–437.

    PubMed  CAS  Google Scholar 

  • Liff H (1969) Responses from single auditory units in the eighth nerve of the leopard frog. J Acoust Soc Am 45:512–513.

    PubMed  CAS  Google Scholar 

  • Liff H, Goldstein MH Jr (1970) Peripheral inhibition in auditory nerve fibers in the frog. J Acoust Soc Am 47:1538–1547.

    PubMed  CAS  Google Scholar 

  • Lim DJ (1972) Fine morphology of the tectorial membrane. Its relationship to the organ of Corti. Arch Otolaryngol 96:199–215.

    PubMed  CAS  Google Scholar 

  • Loftus-Hills JJ (1973) Comparative aspects of auditory function in Australian anurans. Aust J Zool 21:353–367.

    Google Scholar 

  • Loftus-Hills JJ, Johnstone BM (1970) Auditory function, communication and the brain-evoked response in anuran amphibians. J Acoust Soc Am 47:1131–1138.

    PubMed  CAS  Google Scholar 

  • Lombard RE (1970) A Comparative Morphological Analysis of the Inner Ear of Salamanders (doctoral dissertation). Chicago: University of Chicago.

    Google Scholar 

  • Lombard RE (1977) Comparative morphology of the inner ear in salamanders (Caudata; Amphibia). Contrib Vert Evol 2:1–140.

    Google Scholar 

  • Lombard RE (1980) The structure of the amphibian auditory periphery: a unique experiment in terrestrial hearing. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 121–138.

    Google Scholar 

  • Lombard RE, Bolt JR (1979) Evolution of the tetrapod ear: an analysis and reinter-pretation. Biol J Linn Soc 11:19–76.

    Google Scholar 

  • Lombard RE, Straughan IR (1974) Functional aspects of anuran middle ear structures. J Exp Biol 61:71–93.

    PubMed  CAS  Google Scholar 

  • Long GR, van Dijk P, Wit H (1996) Temperature dependence of spontaneous otoacoustic emissions in the edible frog (Rana esculenta). Hear Res 98:22–28.

    PubMed  CAS  Google Scholar 

  • Lowenstein O, Wersäll J (1959) Functional interpretation of the electron microscopic structure of the sensory hairs in the cristae of the elasmobranch Raja clavata in terms of directional sensitivity. Nature (Lond) 184:1807–1808.

    Google Scholar 

  • Marcus H (1935) Zur Entstehung der stapesplatte bei Hypogeophis, Anat Anz 80:142–146.

    Google Scholar 

  • Megela AL (1984) Diversity of adaptation patterns in responses of eighth nerve fibers in the bullfrog, Rana catesbeiana. J Acoust Soc Am 75:1155–1162.

    PubMed  CAS  Google Scholar 

  • Megela AL, Capranica RR (1981) Response patterns to tone bursts in peripheral auditory systems of anurans. J Neurophysiol 46:465–478.

    PubMed  CAS  Google Scholar 

  • Marmo F, Franco E, Balsamo G (1981) Scanning electron microscopy and x-ray diffraction studies of otoconia in the lizard Podarcus s. sicula. Cell Tiss Res 218:265–270.

    CAS  Google Scholar 

  • Marmo F, Balsamo G, Franco E (1983) Calcite in the statoconia of amphibians:a detailed analysis in the frog Rana esculenta. Cell Tiss Res 233:35–43.

    CAS  Google Scholar 

  • McNally WJ, Tait J (1925) Ablation experiments on the labyrinth of the frog.Am J Physiol 75:155–179.

    Google Scholar 

  • Michelsen A, Jorgensen M, Christensen-Dalsgaard J, Capranica RR (1986) Directional hearing of awake, unrestrained treefrogs. Naturwissenschaften 73:682–683.

    PubMed  CAS  Google Scholar 

  • Millot J, Anthony J (1965) Anatomie de Latimeria chalumnae, vol. II. Paris:CNRS.

    Google Scholar 

  • Moffat AJM, Capranica RR (1974) Sensory processing in the peripheral auditory system of treefrogs (Hyla). J Acoust Soc Am 55:480.

    Google Scholar 

  • Moffat AJM, Capranica RR (1976) Auditory sensitivity of the saccule in the American toad (Bufo americanus). J Comp Physiol 105:1–8.

    Google Scholar 

  • Miller AR (1977) Frequency selectivity of single auditory-nerve fibers in response to broad band noise stimuli. J Acoust Soc Am 62:136–142.

    Google Scholar 

  • Moller AR (1978) Frequency selectivity of the peripheral auditory analyzer studied using broadband noise. Acta Physiol Scand 104:24–32.

    PubMed  CAS  Google Scholar 

  • Monath T (1965) The opercular apparatus of salamanders. J Morphol 116:149–170.

    Google Scholar 

  • Mullinger AM, Smith JJB (1969) Some aspects of the gross and fine structure of the amphibian papilla in the labyrinth of the newt, Triturus cristatus. Tissue Cell 1:403–416.

    PubMed  CAS  Google Scholar 

  • Narins PM (1975) Electrophysiological determination of the function of the lagena in terrestrial amphibians. Biol Bull 149:438.

    Google Scholar 

  • Narins PM (1987) Coding of signals in noise by amphibian auditory nerve fibers. Hear Res 26:145–154.

    PubMed  CAS  Google Scholar 

  • Narins PM, Capranica RR (1976) Sexual differences in the auditory system of the treefrog, Eleutherodactylus coqui. Science 192:378–380.

    PubMed  CAS  Google Scholar 

  • Narins PM, Ehret G, Tautz J (1988) Accessory pathway for sound transfer in a neotropical frog. Proc Natl Acad Sci USA 85:1508–1512.

    PubMed  CAS  Google Scholar 

  • Narins PM, Hillery CM (1983) Frequency coding in the inner ear of anuran amphibians. In: Klinke R, Hartmann R (eds) Hearing—Physiological Bases and Psychophysics. Berlin: Springer-Verlag, pp. 70–76.

    Google Scholar 

  • Narins PM, Lewis ER (1984) The vertebrate ear as an exquisite seismic sensor. J Acoust Soc Am 76:1384–1387.

    PubMed  CAS  Google Scholar 

  • Narins PM, Wagner I (1989) Noise susceptibility and immunity of phase locking in amphibian auditory-nerve fibers. J Acoust Soc Am 85:1255–1265.

    PubMed  CAS  Google Scholar 

  • Narins PM, Zelick R (1988) The effects of noise on auditory processing and behavior in amphibians. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley-Interscience, pp. 511–536.

    Google Scholar 

  • Palmer AR, Pinder AC (1984) The directionality of the frog ear described by a mechanical model. J Theor Biol 110:205–215.

    PubMed  CAS  Google Scholar 

  • Palmer AR, Wilson JP (1982) Spontaneous and evoked acoustic emissions in the frog Rana esculenta. J Physiol (Lond) 324:66P.

    Google Scholar 

  • Passmore NI, Capranica RR, Telford SR, Bishop PJ (1984) Phonotaxis in the painted reed frog (Hyperolius marmoratus). J Comp Physiol 154:189–197.

    Google Scholar 

  • Penna M, Narins PM (1989) Effects of acoustic overstimulation on spectral and temporal processing in the amphibian auditory nerve. J Acoust Soc Am 85:1617–1629.

    PubMed  CAS  Google Scholar 

  • Pickles JO (1993) A model for the mechanics of the stereociliar bundle on acousticolateral hair cells. Hear Res 68:159–172.

    PubMed  CAS  Google Scholar 

  • Pickles JO, Comis SD, Osborne MP (1984) Cross links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15:103–112.

    PubMed  CAS  Google Scholar 

  • Pinder AC, Palmer AR (1983) Mechanical properties of the frog ear: vibration measurements under free-and closed-field acoustic conditions. Proc R Soc Lond [B] 219:371–396.

    CAS  Google Scholar 

  • Pitchford S, Ashmore JF (1987) An electrical resonance in hair cells of the amphibian papilla of the frog, Rana temporaria. Hear Res 27:75–84.

    PubMed  CAS  Google Scholar 

  • Platt C (1977) Hair cell distribution and orientation in goldfish otolithic organs. J Comp Neurol 172:283–287.

    PubMed  CAS  Google Scholar 

  • Platt C (1983) Retention of generalized hair cell patterns in the inner ear of the primitive flatfish Psettodes. Anat Rec 207:503–508.

    PubMed  CAS  Google Scholar 

  • Pote KG, Hauer CR, Shabanowitz J, Hunt DF, Kretsinger RH (1993) The major protein of frog otoconia is a homolog of phospholipase A2. Biochemistry 32:5017–5024.

    PubMed  CAS  Google Scholar 

  • Pote KG, Ross MD (1991) Each otoconia polymorph has a protein unique to that polymorph, Comp Biochem Physiol [B] 98:287–295.

    CAS  Google Scholar 

  • Pote KG, Weber CH, Kretsinger RH (1993) Inferred protein content and distribution from density measurements of calcitic and aragonitic otoconia. Hear Res 66:225–232.

    PubMed  CAS  Google Scholar 

  • Purgue AP (1997) Tympanic sound radiation in the bullfrog Rana catesbeiana. J Comp Physiol A 181:438–445.

    PubMed  CAS  Google Scholar 

  • Purgue AP, Narins PM (1997a) Morphology and wave transmission properties of the perilymphatic duct in the bullfrog, Rana catesbeiana. Assoc Res Otolaryngol Abstr 20:140.

    Google Scholar 

  • Purgue AP, Narins PM (1997b) The vibration patterns of the contact membrane: the key to the stimulation of the tectorial membrane in the bullfrog, Rana catesbeiana? Assoc Res Otolaryngol Abstr 20:140.

    Google Scholar 

  • Rauch S, Rauch I (1974) Physico-chemical properties of the inner ear especially ion transport. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, vol. 1: Auditory System. Berlin: Springer-Verlag, pp. 647–682.

    Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbelthiere. I. Gehörorgander Fische and Amphibien. Stockholm: Samson and Wallin.

    Google Scholar 

  • Rheinlaender J, Gerhardt HC, Yager DD, Capranica RR (1979) Accuracy of phonotaxis by the green treefrog (Hyla cinerea). J Comp Physiol 133:247–255.

    Google Scholar 

  • Rheinlaender J, Klump G (1988) Behavioral aspects of sound localization. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 297–305.

    Google Scholar 

  • Rheinlaender J, Walkowiak W, Gerhardt HC (1981) Directional hearing in the green treefrog: a variable mechanism? Naturwissenschaften 68:430–431.

    Google Scholar 

  • Robbins RG, Bauknight BS, Honrubia MD (1967) Anatomical distribution of efferent fibers in the VIIIth cranial nerve of the bullfrog (Rana catesbeiana). Acta Otolaryngol 64:436–448.

    PubMed  CAS  Google Scholar 

  • Ronken DA (1991) Spike discharge properties that are related to the characteristic frequency of single units in the frog auditory nerve. J Acoust Soc Am 90:2428–2440.

    PubMed  CAS  Google Scholar 

  • Rose GJ, Capranica RR (1985) Sensitivity to amplitude modulated sounds in the anuran auditory nervous system. J Neurophysiol 53:446–465.

    PubMed  CAS  Google Scholar 

  • Ross RJ, Smith JJB (1977) Detection of substrate vibrations by salamanders: eighth cranial nerve activity. Can J Zool 57:368–374.

    Google Scholar 

  • Ross RJ, Smith JJB (1978) Detection of substrate vibrations by salamanders: inner ear sense organ activity. Can J Zool 56:1156–1162.

    Google Scholar 

  • Ross RJ, Smith JJB (1980) Detection of substrate vibrations by salamanders: frequency sensitivity of the ear. Comp Biochem Physiol 65A:167–172.

    Google Scholar 

  • Sachs MB (1964) Responses to acoustic stimuli from single units in the eighth nerve of the green frog. J Acoust Soc Am 36:1956–1958.

    Google Scholar 

  • Sachs MB, Kiang NYS (1968) Two-tone inhibition in auditory nerve fibers. J Acoust Soc Am 43:1120–1128.

    PubMed  CAS  Google Scholar 

  • Sarasin P, Sarasin F (1890) Zur Entwicklungsgeschichte and Anatomie der ceylonesischen Blindwühle Ichthyophis glutinosus. Das Gehörorgan. Erg Naturwiss Forsch auf Ceylon (Wiesbaden) 2:207–222.

    Google Scholar 

  • Sarasin P, Sarasin F (1892) Über das Gehörorgan der Ceaciliiden. Anat Anz 7:812–815.

    Google Scholar 

  • Schmitz B, White TD, Narins PM (1992) Directionality of phase locking in auditory nerve fibers of the leopard frog Rana pipiens pipiens. J Comp Physiol 170:589–604.

    CAS  Google Scholar 

  • Schwartz JJ, Simmons AM (1990) Encoding of a spectrally-complex communication sound in the bullfrog’s auditory nerve. J Comp Physiol 166:489–499.

    CAS  Google Scholar 

  • Shepherd GMG, Corey DP (1994) The extent of adaptation in bullfrog saccular hair cells. J Neurosci 14:6217–6229.

    PubMed  CAS  Google Scholar 

  • Shofner WP, Feng AS (1983) A quantitative light microscopic study of the bullfrog amphibian papilla tectorium: correlation with the tonotopic organization. Hear Res 11:103–116.

    PubMed  CAS  Google Scholar 

  • Shotwell SL, Jacobs R, Hudspeth AJ (1981) Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Ann NY Acad Sci 374:1–10.

    PubMed  CAS  Google Scholar 

  • Simmons AM, Ferragamo M (1993) Periodicity extraction in the anuran auditory nerve I: “pitch-shift” effects. J Comp Physiol 172:57–69.

    CAS  Google Scholar 

  • Simmons AM, Shen Y, Sanderson MI (1996) Neural and computational basis for periodicity extraction in frog peripheral auditory system. Aud Neurosci 2:109–133.

    Google Scholar 

  • Simmons DD, Bertolotto C, Narins PM (1992) Innervation of the amphibian and basilar papillae in the leopard frog: reconstruction of single labeled fibers. J Comp Neurol 322:191–200.

    PubMed  CAS  Google Scholar 

  • Simmons DD, Bertolotto C, Narins PM (1994) Morphological gradients in sensory hair cells of the amphibian papilla of the frog, Rana pipiens pipiens. Hear Res 80:71–78.

    PubMed  CAS  Google Scholar 

  • Simon EJ, Hilding DA, Kashgarian M (1973) Micropuncture study of the mechanism of endolymph production in the frog. Am J Physiol 225:114–118.

    PubMed  CAS  Google Scholar 

  • Smith JB (1968) Hearing in terrestrial urodeles: a vibration sensitive mechanism in the ear. J Exp Bio 148:191–205.

    Google Scholar 

  • Smotherman MS, Narins PM (1997) Variations of the electrical properties of hair cells isolated from the amphibian papilla of the leopard frog. Assoc Res Otolaryngol Abstr 20:141.

    Google Scholar 

  • Smotherman MS, Narins PM (1998) The effect of temperature on electrical resonance in leopard frog saccular hair cells. J Neurophysiol 79:312–321.

    PubMed  CAS  Google Scholar 

  • Steel KP (1985) Composition and properties of the mammalian tectorial membrane. In: Drescher D (ed) Auditory Biochemistry. Springfield, IL: CC Thomas, pp. 351–365.

    Google Scholar 

  • Steyger PS, Wiederhold ML, Batten J (1995) The morphogenic features of otoconia during larval development of Cynops pyrrhogaster, the Japanese red-bellied newt. Hear Res 84:61–71.

    PubMed  CAS  Google Scholar 

  • Stiebler IB, Narins PM (1990) Temperature-dependence of auditory nerve responses properties in the frog. Hear Res 46:63–82.

    PubMed  CAS  Google Scholar 

  • Strelioff D, Haas G, Honrubia V (1972) Sound-induced electrical impedance changes in the guinea pig cochlea. J Acoust Soc Am 51:617–620.

    Google Scholar 

  • Tachibana M, Saito H, Machino M (1973) Sulfated acid mucopolysaccharides in the tectorial membrane. Acta Otolaryngol 76:37–46.

    PubMed  CAS  Google Scholar 

  • Taylor EH (1969) Skulls of Gymnophiona and their significance in the taxonomy of the group. Univ Kansas Sci Bull 48:585–687.

    Google Scholar 

  • Villiers CGS de (1932) Über das Gehörskelett der aglossen Anuren. Anat Anz 71:305–331.

    Google Scholar 

  • Villiers CGS de (1934) Studies of the cranial anatomy of Ascaphus truei Stejneger. Bull Mus Comp Zool Harvard Coll 77:1–38.

    Google Scholar 

  • Vlaming MSMG, Aertsen AMHJ, Epping WJM (1984) Directional hearing in the grass frog (Rana temporaria L.): I. Mechanical vibrations of tympanic membrane. Hear Res 14:191–201.

    PubMed  CAS  Google Scholar 

  • Wang J, Narins PM (1996) Directional masking of phase locking in the amphibian auditory nerve. J Acoust Soc Am 99:1611–1620.

    PubMed  CAS  Google Scholar 

  • Wang J, Ludwig TA, Narins PM (1996) Spatial and spectral dependence of the auditory periphery in the northern leopard frog. J Comp Physiol 178:159–172.

    CAS  Google Scholar 

  • Weyer EG (1973) The ear and hearing in the frog, Rana pipiens. J Morphol 141:461–478.

    Google Scholar 

  • Weyer EG (1974) The evolution of vertebrate hearing. In: Keidel MD, Neff WD (eds) Handbook of Sensory Physiology, vol. 1: Auditory System. Berlin: Springer-Verlag, pp. 423–454.

    Google Scholar 

  • Weyer EG (1975) The caecilian ear. J Exp Biol 191:63–72.

    Google Scholar 

  • Weyer EG (1976) Origin and evolution of the ear of vertebrates. In: Masterton RB, Hodos W, Jerison H (eds) Evolution of Brain and Behavior in Vertebrates. Hillsdale, NJ: Lawrence Erlbaum, pp. 89–105.

    Google Scholar 

  • Weyer EG (1979) Middle ear muscles of the frog. Proc Natl Acad Sci USA 76:3031–3033.

    Google Scholar 

  • Weyer EG (1985) The Amphibian Ear. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Weyer EG, Gans C (1976) The caecilian ear: further observations. Proc Natl Acad Sci USA 73:3744–3746.

    Google Scholar 

  • White JS (1978) A light and scanning electron microscopic study of the basilar papilla in the salamander, Ambystoma tigrinum. Am J Anat 151:437–452.

    PubMed  CAS  Google Scholar 

  • White JS (1986) Comparative features of the surface morphology of the basilar papilla in five families of Salamanders (Amphibia; Caudata). J Morphol 187:201–217.

    PubMed  CAS  Google Scholar 

  • White JS, Baird IL (1982) Comparative morphological features of the caecilian inner ear with comments on the evolution of amphibian auditory structures. Scan Electr Microsc 1982(3):1301–1312.

    Google Scholar 

  • White TD, Schmitz B, Narins PM (1992) Directional dependence of auditory sensitivity and frequency selectivity in the leopard frog. J Acoust Soc Am 92:1953–1961.

    PubMed  CAS  Google Scholar 

  • Whitehead ML, Wilson JP, Baker RJ (1986) The effects of temperature on otoacoustic emission tuning properties. In: Moore BCJ, Patterson RD (eds) Auditory Frequency Selectivity. New York: Plenum, pp. 39–48.

    Google Scholar 

  • Wiederhold ML, Yamashita M, Larsen KA, Batten JS, Koike H, Asashima M (1995) Development of the otolith organs and semicircular canals in the Japanese red-bellied newt, Cynops pyrrhogaster. Hear Res 84:41–51.

    PubMed  CAS  Google Scholar 

  • Wilczynski W, Zakon HH, Brenowitz EA (1983) A sex difference in basilar papilla tuning in the Hyla crucifer auditory system and its behavioral significance. Soc Neurosci Abstr 9:531.

    Google Scholar 

  • Wilczynski W, Zakon HH, Brenowitz EA (1984) Acoustic communication in spring peepers. Call characteristics and neurophysiological aspects. J Comp Physiol 155:577–584.

    Google Scholar 

  • Wilczynski W, Resler C, Capranica RR (1987) Tympanic and extratympanic sound transmission in the leopard frog. J Comp Physiol 161:659–669.

    CAS  Google Scholar 

  • Wislocki GB, Ladman AJ (1955) Selective and histochemical staining of the otolithic membranes, cupulae and tectorial membrane of inner ear. J Anat (Lond) 89:3–12.

    CAS  Google Scholar 

  • Wit HP, van Dijk P, Segenhout JM (1994) Wiener kernel analysis of the inner ear function in the American bullfrog. J Acoust Soc Am 95:904–919.

    PubMed  Google Scholar 

  • Witschi E (1949) The larval ear of the frog and its transformation during metamorphosis. Z Natur 4(b):230–242.

    Google Scholar 

  • Witschi E (1955) The bronchial columella of the ear of larval Ranidae. J Morphol 96:497–512.

    Google Scholar 

  • Wolodkin GJ, Yamada WM, Lewis ER, Henry KR (1997) Spike rate models for auditory fibers. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Poinar E (eds) Diversity in Auditory Mechanics. Singapore: World Scientific Press, pp. 104–110.

    Google Scholar 

  • Yamada WM, Wolodkin GJ, Lewis ER, Henry KR (1997) Wiener kernel analysis and the singular value decomposition. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Poinar E (eds) Diversity in Auditory Mechanics. Singapore: World Scientific Press, pp. 111–118.

    Google Scholar 

  • Yano J, Sugai T, Sugitani M, Ooyama H (1990) Observations of the sensing and tectorial membrane in bullfrog amphibian papilla: their possible functional roles. Hear Res 50:237–244.

    PubMed  CAS  Google Scholar 

  • Yu XL (1991) Signal Processing Mechanics in Bullfrog Ear Inferred from Neural Spike Trains (doctoral dissertation). Berkeley: University of California.

    Google Scholar 

  • Yu XL, Lewis ER, Feld D (1991) Seismic and auditory tuning curves from bullfrog saccular and amphibian papillar axons. J Comp Physiol 169:241–248.

    CAS  Google Scholar 

  • Zakon HH, Wilczynski W (1988) Anuran eighth nerve physiology. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley-Interscience, pp. 125–155.

    Google Scholar 

  • Zelick R, Narins PM (1985) Temporary threshold shift, adaptation, are recovery characteristics of frog auditory nerve fibers. Hear Res 17:161–176.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lewis, E.R., Narins, P.M. (1999). The Acoustic Periphery of Amphibians: Anatomy and Physiology. In: Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Fish and Amphibians. Springer Handbook of Auditory Research, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0533-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0533-3_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6806-2

  • Online ISBN: 978-1-4612-0533-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics