Skip to main content

Hearing in Two Worlds: Theoretical and Actual Adaptive Changes of the Aquatic and Terrestrial Ear for Sound Reception

  • Chapter
Comparative Hearing: Fish and Amphibians

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 11))

Abstract

Sound in both water and air has two physical properties, the near-field particle motion generated by any moving object and the far-field pressure simultaneously generated by these objects (39). Based on the physical properties of the medium (the so-called characteristic impedance, which is about 3500 times larger for water than for air) and the steep loss of energy over distance (dipole source: 1/distance3; monopole source: 1/distance2) in the particle or direct sound in a frequency specific fashion (63), this component of sound carries enough energy to stimulate a receptor only over a very short range at low frequencies. In particular in air, this range is too short to play a role in terrestrial hearing in vertebrates and is used only by some insects (52). While sound pressure reception opens up a wider range over which sound can be received as it falls off less steeply (1/distance), it cannot be extracted easily without specializations external to the inner ear. These adaptations to sound pressure reception, the way terrestrial and some aquatic vertebrates hear, essentially have to funnel the limited energy present in the far field with minimal loss to the appropriate receptor organs in the inner ear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlberg PE, Clack JA, Luksevics E (1996) Rapid braincase evolution between Panderichthyes and the earliest tetrapods. Nature 381:61–63.

    Article  CAS  Google Scholar 

  • Averof M, Cohen SM (1997) Evolutionary origin of insect wings from ancestral gills. Nature 385:627–630.

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H, Niemann U, Fritzsch B (1991) Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus sp. J Comp Neurol 314:452–466.

    Article  PubMed  CAS  Google Scholar 

  • Bolt JR, Lombard ER (1992) Nature and quality of the fossil evidence of otic evolution in early tetrapods. In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 377–403.

    Chapter  Google Scholar 

  • Bronchti G, Heil P, Scheich H, Wollberg Z (1989) Auditory pathway and auditory activation of primary visual targets in the blind mole rat, (Spalax ehrenbergi): 1,2-deoxyglucose study of subcortical centers. J Comp Neurol 284:253–274.

    Article  PubMed  CAS  Google Scholar 

  • Bruce LL, Kingsley J, Nichols DH, Fritzsch B (1997) The development of vestibulocochlear efferents and cochlear afferents in mice. Int J Dev Neurosci 15:567–584.

    Article  Google Scholar 

  • Buwalda RJA, Schuijf A, Hawkins AD (1983) Discrimination by the cod of sound from opposing directions. J Comp Physiol 150:175–184.

    Article  Google Scholar 

  • Campbell KSW, Barwick RE (1986) Paleozoic lungfishes—a review. J Morphol Suppl 1:93–131.

    Article  Google Scholar 

  • Canfield JC, Rose GJ (1996) Hierarchical sensory guidance of Mauthner-mediated escape response in goldfish (Carassius auratus) and cichlids (Haplochromis burtoni). Brain Behav Evol 48:137–156.

    Article  PubMed  CAS  Google Scholar 

  • Carrol RL (1988) Vertebrate Palaeontology and Evolution. New York: Freeman.

    Google Scholar 

  • Christian JL, Moon RT (1993) Interactions between Xwnt-8 and Spemann orga-nizer signaling pathways generate dorsoventral pattern in the embryonic meso-derm of Xenopus. Genes Dev 7:13–28.

    Article  PubMed  CAS  Google Scholar 

  • Clack JA (1992) The stapes of Acanthostega gunnari and the role of the stapes in early tetrapods. In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 405–419.

    Chapter  Google Scholar 

  • Cloutier R, Ahlberg PE (1996) Morphology, characters, and the interrelationships of basal sarcopterygians. In: Stiassny MU, Parenti LR, Johnson GD (eds) Interrelationship of Fishes. San Diego: Academic Press, pp. 445–480.

    Chapter  Google Scholar 

  • Coombs S (1994) Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi). J Exp Biol 190:109–129.

    PubMed  CAS  Google Scholar 

  • Coombs S, Jansen J, Montgomery J (1992) Functional and evolutionary implications of peripheral diversity in lateral line systems. In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 267–293.

    Chapter  Google Scholar 

  • Cooper HM, Herbin M, Nevo E (1993) Visual system of a naturally microphthalmic mammal: the blind mole rat Spalax ehrenbergi. J Comp Neurol 328:313–350.

    Article  PubMed  CAS  Google Scholar 

  • Corwin JY (1981) Audition in elasmobranchs. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 81–105.

    Chapter  Google Scholar 

  • Duellman WE, Trueb L (1994) Biology of Amphibians. Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Fekete DM (1996) Cell fate specification in the inner ear. Curr Opin Neurobiol 6:533–541.

    Article  PubMed  CAS  Google Scholar 

  • Fink SA, Fink WL (1996) Interrelationship of ostariophysin fishes (teleostei). In: Stiassny MU, Parenti LR, Johnson GD (eds) Interrelationship of Fishes. San Diego: Academic Press, pp. 209–250.

    Chapter  Google Scholar 

  • Fritzsch B (1987) The inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature 327:153–154.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B (1989) Diversity and regression in the amphibian lateral line system. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line Neurobiology and Evolution. New York: Springer-Verlag, pp. 99–115.

    Chapter  Google Scholar 

  • Fritzsch B (1990) Experimental reorganization in the alar plate of the clawed toad Xenopus laevis. I. Quantitative and qualitative effects of embryonic otocyst extirpation. Dev Brain Res 51:113–122.

    Article  CAS  Google Scholar 

  • Fritzsch B (1992) The water-to-land transition: evolution of the tetrapod basilar papilla middle ear and auditory nuclei. In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag; pp. 351–375.

    Chapter  Google Scholar 

  • Fritzsch B (1996) Development of the labyrinthine efferent system. Ann NY Acad Sci 781:21–33.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Wake MH (1988) The inner ear of gymnophione amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system. Zoomorphology 108:210–217.

    Article  Google Scholar 

  • Fritzsch B, Nichols DH, Echelard Y, McMahon AP (1995) The development of midbrain and anterior hindbrain ocular motoneurons in normal and in Wnt-1 knockout mice. J Neurobiol 27:457–469.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Barald K, Lomax M (1998) Early embryology of the vertebrate ear. In: Rubel EW, Popper AN, Fay RR (eds) Development of the Auditory System. New York: Springer-Verlag, 80–145.

    Chapter  Google Scholar 

  • Fritzsch B, Silos-Santiago I, Bianchi L, Farinas I (1997) The role of neurotrophic factors in regulating inner ear innervation. TINS 20:159–164.

    PubMed  CAS  Google Scholar 

  • Gaupp E (1898) Ontogenese and Phylogenese des schalleitenden Apparates bei den Wirbeltieren. Erg Anat Entwicklungsgesch 8:990–1149.

    Google Scholar 

  • Grande L, Bemis WE (1996) Interrelationships of acipenseriformes, with comments on “Chondrostei.” In: Stiassny MU, Parenti LR, Johnson GD (eds) Interrelationship of Fishes. San Diego: Academic Press, pp. 85–116.

    Chapter  Google Scholar 

  • Gutknecht D, Fritzsch B (1990) Lithium induces multiple ear vesicles in Xenopus laevis embryos. Naturwissenschaften 77:235–237.

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB, Maxson LR (1993) A molecular perspective on lissamphibian phylogeny. Herpetol Monogr 7:27–42.

    Article  Google Scholar 

  • Janvier P (1996) Early Vertebrates. Oxford, England: Oxford University Press.

    Google Scholar 

  • Jarvik E (1980) Basic Structure and Evolution of Vertebrates, Vol. 1. London: Academic Press.

    Google Scholar 

  • Jaslow AP, Hetherington TE, Lombard RE (1988) Structure and function of the amphibian middle ear. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 69–91.

    Google Scholar 

  • Jefferies RPS (1986) The Ancestry of the Vertebrates. London: British Museum (Natural History).

    Google Scholar 

  • Johnson GD, Patterson C (1996) Relationships of lower euteleostean fishes. In: Stiassny MLJ, Parenti LR, Johnson GD (eds) Interrelationship of Fishes. San Diego: Academic Press, pp. 251–332.

    Chapter  Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 84–130.

    Google Scholar 

  • Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138.

    Article  PubMed  CAS  Google Scholar 

  • Landmesser L (1972) Pharmacological properties cholinesterase activity and anatomy of nerve-muscle junctions in vagus-innervated frog sartorius. J Physiol 220:243–256.

    PubMed  CAS  Google Scholar 

  • Larsell O (1967) In: Jansen J (ed) The Comparative Anatomy and Histology of the Cerebellum from Myxinoids through Birds. Minneapolis; University of Minnesota Press, pp. 163–178.

    Google Scholar 

  • Lecointre G, Nelson G (1996) Clupeomorpha, sister-group of ostariophysi. In: Stiassny MLJ, Parenti LR, Johnson GD (eds) Interrelationship of Fishes. San Diego: Academic Press, pp. 193–208.

    Chapter  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The vertebrate Inner Ear. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Lombard RE, Bolt JR (1988) Evolution of the stapes in paleozoic tetrapods. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 37–67.

    Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate axis. Science 274:1109–1115.

    Article  PubMed  CAS  Google Scholar 

  • Manns M, Fritzsch B (1992) Retinoic acid affects the organization of reticulospinal neurons in developing Xenopus. Neurosci Lett 139:253–256.

    Article  PubMed  CAS  Google Scholar 

  • Mansour SL, Goddard JM, Capecchi MR (1993) Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117:13–28.

    PubMed  CAS  Google Scholar 

  • McCormick CA (1992) Evolution of central auditory pathways in anamniotes. In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag; pp. 323–349.

    Chapter  Google Scholar 

  • McKay IJ, Lewis J, Lumsden A (1996) The role of FGF-3 in early inner ear development: an analysis in normal and kreisler mutant mice. Dev Biol 174:370–378.

    Article  PubMed  CAS  Google Scholar 

  • Metin C, Frost DO (1991) Visual responses on neurons in somatosensory cortex of hamster with experimentally induced retinal projections to somatosensory thalamus. In: Finlay BL, Innocenti G, Scheich H (eds) The Neocortex: Ontogeny and Phylogeny. London: Plenum Press, pp. 219–228.

    Google Scholar 

  • Michelsen A (1992) Hearing and sound communciation in small animals: evolutionary adaptation to the law of physics. In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 61–78.

    Chapter  Google Scholar 

  • Moore DR (1992) Developmental plasticity of the brainstem and midbrain auditory nuclei. In: Romand R (ed) Development of Auditory and Vestibular Systems 2. Amsterdam: Elsevier, pp. 297–320.

    Google Scholar 

  • Myat A, Henrique D, Irsh-Horowicz D, Lewis J (1996) A chick homologue of serrate and its relationship with notch and delta homologues during central neurogenesis. Dev Biol 174:233–247.

    Article  PubMed  CAS  Google Scholar 

  • Noden DM (1987) Interactions between cephalic neural crest and mesodermal populations. In: Maderson PFA (ed) Developmental and Evolutionary Aspects of the Neural Crest. New York: Wiley, pp. 89–120.

    Google Scholar 

  • Northcutt RG (1992) The phylogeny of octavolateralis ontogenies: a reaffirmation of Garstang’s phylogenetic hypothesis. In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 21–47.

    Chapter  Google Scholar 

  • Pallas SL (1991) Cross-modal plasticity in sensory cortex. In: Finlay BL, Innocenti G, Scheich H (eds) The Neocortex: Ontogeny and Phylogeny. London: Plenum Press, pp. 205–218.

    Google Scholar 

  • Peusner KD (1992) Development of vestibular nuclei. In: Romand R (ed) Development of Auditory and Vestibular Systems 2. Amsterdam: Elsevier, pp. 489–518.

    Google Scholar 

  • Platt C, Popper AN (1996) Sensory hair cell arrays in lungfish inner ear suggest retention of the primitive patterns for bony fishes. Soc Neurosci Abstr 22:18–19.

    Google Scholar 

  • Reichert C (1837) Über die Visceralbögen der Wirbeltiere im allgemeinen und deren Metamorphose bei den Vögeln und Säugetieren. Arch Anat Physiol 120 222.

    Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbeltiere: I. Das Gehörorgan der Fische und Amphibien. Stockholm: Samson and Wallin.

    Google Scholar 

  • Roberts BL, Meredith GE (1992) The efferent innervation of the ear: variations on an enigma In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 182–210.

    Google Scholar 

  • Schellart NAM, Popper AN (1992) Functional aspects of the evolution of the auditory system of actinopterygian fish. In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 295–321.

    Chapter  Google Scholar 

  • Starck D (1979) Vergleichende Anatomie der Wirbeltiere. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Stiassny MLJ, Parenti LR, Johnson GD (1996) Interrelationship of Fishes. San Diego: Academic Press.

    Google Scholar 

  • Swalla BJ, Jeffrey WR (1996) Requirement of the Manx gene for expression of chordate features in a tailless ascidian larva. Science 274:1205–1208.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y, Jessell TM (1996) Diversity and pattern in the developing spinal cord. Science 274:1115–1123.

    Article  PubMed  CAS  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133.

    Article  PubMed  CAS  Google Scholar 

  • Thulborn T, Warren A, Turner S, Hamley T (1996) Early carboniferous etrapods in Australia. Nature 381:777–780.

    Article  CAS  Google Scholar 

  • Toerien MJ (1963) Experimental studies on the origin of the cartilage of the auditory capsule and columella in Ambystoma. J Embryol Exp Morphol 11:459–473.

    PubMed  CAS  Google Scholar 

  • Van Bergijk WA (1966) Evolution of the sense of hearing in vertebrates. Am Zool 6:371–377.

    Google Scholar 

  • Webster DB (1992) Epilogue to the conference on the evolutionary biology of hearing. In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 787–793.

    Chapter  Google Scholar 

  • Werner G (1960) Das Labyrinth der Wirbeltiere. Jena: Fischer Verlag.

    Google Scholar 

  • Will U, Fritzsch B (1988) The octavus nerve of amphibians: patterns of afferents and efferents. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 159–184.

    Google Scholar 

  • Wilm C, Fritzsch B (1992) Ipsilateral retinal projections into the tectum during regeneration of the optic nerve in the cichlid fish Haplochromis burtoni. J Neurobiol 23:692–707.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fritzsch, B. (1999). Hearing in Two Worlds: Theoretical and Actual Adaptive Changes of the Aquatic and Terrestrial Ear for Sound Reception. In: Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Fish and Amphibians. Springer Handbook of Auditory Research, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0533-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0533-3_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6806-2

  • Online ISBN: 978-1-4612-0533-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics