Skip to main content

Fabrication of Atomically Controlled Nanostructures and Their Device Application

  • Chapter
Nanotechnology

Abstract

During the last three decades, we have witnessed remarkable progress in the entire spectrum of semiconductor technology. In the area of epitaxy, for example, the emergence of molecular beam epitaxy (MBE) and organo-metallic vapor phase epitaxy (OMVPE) has allowed us to prepare quantum wells, tunneling barriers, and other ultra-thin layered structures, such as shown in Figures 1(a) and (b). In these structures, semiconductor films of specified thicknesses and compositions are deposited with the accuracy of one atomic layer (˜0.3 nm). Artificial potential profiles V(z) created in such structures are used to control the quantum-mechanical motion of electrons, providing a variety of electronic properties which are important both in solid-state physics and in advanced device applica-tions[l-6]. Figure 2 illustrates several examples of such potentials. Indeed, these layered structures are now used as the core parts of high-performance devices, such as quantum well lasers, Stark modulators, quantum-well infrared detectors, high electron mobility transistors, and resonant tunneling diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Semiconductors and Semimetals, Dingle R., ed., 24, Boston: Academic Press, 1987

    Google Scholar 

  2. Weisbush C., and Vinter B., Quantum Semiconductor Heterostructures, Boston: Academic Press, 1991

    Google Scholar 

  3. Physics of nanostructures, Davies J.H., and Long A.R., eds., Bristol: Institute of Physics Publ., 1992

    Google Scholar 

  4. Cardona M., and Pinczuk A., Solid State Commun. 92, No. 1-2 (1994)

    Google Scholar 

  5. See a series of related papers in A Special Issue of IEEE J. Quantum Electronics, Chemla D., and Pinczuk A., eds., 1986

    Google Scholar 

  6. For recent progress of MBE, see Molecular beam epitaxy: Key Paper in Physics, Cho A.Y., ed., American Inst. of Phys., 1994. For OM VPE, see, for example, J. Cryst. Growth 124, No. 1-4 Stringfellow, G.B., Coleman, J.J., eds., (1992).

    Google Scholar 

  7. Nanostructured Systems, Semiconductors and Semimetals 35, Reed M., ed., New York: Academic Press, 1992. On quantum wires, see the article by Timp, G., (p. 113). On quantum point contacts, see the article by Van Houten, H., Beenakker, C.W.J., and Van Wees, B.J., (p. 9)

    Google Scholar 

  8. Sakaki H., Surface Sci. 267, 623 1992

    Article  Google Scholar 

  9. Meirav U., and Foxman E.B., Semicond. Set Technol. 10, 255 1995

    Article  Google Scholar 

  10. Single Charge Tunneling, Grabert H., and Devorter M.H., eds., New York: Plenum, 1992; and Geerlings, L.J., Harmans, C.P.J.M., and Kouwenhoven, L.P., Physica B 189, 1993

    Google Scholar 

  11. For a recent review, see: NATO-ASI series E, Eberl K., Petroff P.M., and Demester P., eds., 298, Kluwer, 1995

    Google Scholar 

  12. Sakaki H., in Semiconductor Interfaces at the Subnanometer Scale, Salemink H.W.M., and Pathley M.D., eds., Kluwer, 1993

    Google Scholar 

  13. Feenstra R.M., et al., Semiconductor Interfaces at the Subnanometer Scale, Salemink H.W.M., and Pathley M.D, eds., Kluwer, 1993, p. 127

    Google Scholar 

  14. Johnson M.B., et al., Semiconductor Interfaces at the Subnanometer Scale, Salemink H.W.M., and Pathley M.D, 207, 1993 and references therein

    Google Scholar 

  15. Salemink H.W.M., et al., Semiconductor Interfaces at the Subnanometer Scale, Salemink H.W.M., and Pathley M.D, 151, 1993 and references therein

    Google Scholar 

  16. Orr B.G., et al., in Nanostructures and Quantum Effects, Sakaki H., ed., Springer, 1994. Also, Johnson, M.D., et al., Appl Phys. Lett. 64, 484 (1994)

    Google Scholar 

  17. Ourmazd A., in Semiconductor Interfaces at the Subnanometer Scale, Salemink H.W.M., and Pashley M.D., eds., Kluwer, 1993, p.139; and also Phys. Rev. Lett. 62, 933 (1989)

    Google Scholar 

  18. Ichinose H., et al., J. Electron Microscopy. 36, 82 (1987)

    Google Scholar 

  19. Ikarashi N., et al., Jpn. J. Appl. Phys. 32, Part-1, 2824, (1993); and Appl. Phys. Lett. 60, 1360 (1992)

    Article  Google Scholar 

  20. Petroff P.M., J. Cryst. Growth 44, 5 (1978)

    Article  Google Scholar 

  21. Weisbuch C., Solid State Commun. 38, 709 (1981)

    Article  Google Scholar 

  22. Goldstein L., et al., Jpn. J. Appl. Phys. 22, 1489 (1983)

    Article  Google Scholar 

  23. Sakaki H., Tanaka M., and Yoshino J., Jpn. J. Appl. Phys. 24, L417 (1983)

    Article  Google Scholar 

  24. Tanaka M., Sakaki H., and Yoshino J., Jpn. J. Appl Phys. L155, (1986). Tanaka,M, and Sakaki,H., J. Cryst. Growth 81, 153 (1987)

    Google Scholar 

  25. Tanaka M., and Sakaki H., Superlattices and Microstructures 4, 1988, p. 237; and J. Appl. Phys. 64, 4503 (1988)

    Article  Google Scholar 

  26. Fukunaga T., Kobayashi K.L., and Nakashima H., Jpn. J. Appl. Phys. 24, L510 (1985). Binberg,D., et al., J. Vac Sci. and Tech. B5,1141 (1987)

    Article  Google Scholar 

  27. Tu C.W., et al., J. Cryst. Growth. 81, 159 (1987)

    Article  Google Scholar 

  28. Warwick C.A., and Kopf R.F., Appl. Phys. Lett. 60, 386 (1992); and Gammons,D., Shamabruiks,B.C., and Katzer,D.S., Phys. Rev. Lett. 67, 1547 (1991)

    Article  Google Scholar 

  29. Sakaki H., et al., Appl. Phys. Lett. 51, 1934 (1987)

    Article  Google Scholar 

  30. Noda T., Tanaka M., and Sakaki H., et al., Appl. Phys. Lett. 56, 51 1990

    Article  Google Scholar 

  31. Tokura Y., et al., Phys. Rev. B, Condens. Matter., 46, No. 23, 15558–15561 (1992)

    Article  Google Scholar 

  32. Neave J.H., et al., Appl. Phys. A. 31, 1 (1983)

    Article  Google Scholar 

  33. See, for example, Vvedensky D.D., in Semiconductor Interfaces at the sub-nanometer Scale, Salemink H.W.M., and Pashley M.D., eds., Kluwer, 1983, p. 217

    Google Scholar 

  34. Shitara T., et al., Phys. Rev. B 46, 6815 (1992)

    Article  Google Scholar 

  35. Saito J., et al., J. Cryst. Growth 81, 188 (1987)

    Article  Google Scholar 

  36. Hess H.F., et al., Science 264, 1720, (1994); and also Grober R.D., et al., Appl. Phys. Lett. 64, 1421 (1994)

    Google Scholar 

  37. Brunner K., et al., Appl. Phys. Lett. 64, 3300, (1947); and also Enenner,A., et al., Phys. Rev. Lett. 72, 3382 (1994)

    Google Scholar 

  38. Miller D.A.B., Weiner J.S., and Chemla D.S., IEEE J. Quantum Electronics QE22, 181h (1986)

    Google Scholar 

  39. Chelma D.S., in Physics and Applications of Quantum Wells and Superlattices, Mendez E.E., and Von Klitzing K., eds., NATO ASI series B Physics 170, Plenum Press, 1987, p. 423

    Google Scholar 

  40. Chelma D.S., Miller A.B., and Smith P.W., Semiconductor Semimetals, Willardson R.K., and Beer A.C., eds., Academic Press, 1987, vol. 24, p. 279

    Google Scholar 

  41. Mendez E.E., Agullo-Rueda F., and Hong J.M., Appl. Phys. Lett. 56, 2545 (1990)

    Article  Google Scholar 

  42. Voisin P., et al., Phys. Rev. Lett. 61, 1639 (1988)

    Article  Google Scholar 

  43. Miller D.A.B., et al., Appl. Phys. Lett. (1988)

    Google Scholar 

  44. Sakaki H., Kato K., and Yoshimura H., Appl. Phys. Lett. 57, 2800 (1990)

    Article  Google Scholar 

  45. Zucker J., et al., Electronics Lett. 28, 2206 (1992)

    Article  Google Scholar 

  46. Tsang W.T., in Semiconductor Semimetals, Willardson R.K., and Beer A.C., eds., Academic Press, vol. 24, 1987, p. 397; see also Arakawa,Y., and Yariv,A., IEEE J. Quantum Electronics QF-22, 1987 (1986)

    Google Scholar 

  47. Ranyai L., et al., Phys. Rev. B 36, 6099 (1987)

    Article  Google Scholar 

  48. Arakawa Y., and Sakaki H., Appl. Phys. Lett. 40, 893 (1982)

    Article  Google Scholar 

  49. Asada M., Miyamoto Y., and Suematsu Y., IEEE J. Quantum Electronics. 22, 1915 (1986)

    Article  Google Scholar 

  50. See, for example: Slusher R.E., and Weisbuch C., Solid State Commun. 92, 149 (1994)

    Article  Google Scholar 

  51. Esaki L., and Sakaki H., IBM Tech. Disclos. Bulletin. 20, 2456 (1977)

    Google Scholar 

  52. Levine B., J. Appl. Phys. 74, R–l (1993)

    Article  Google Scholar 

  53. Faist J., et al., Science. 264, 553 (1994)

    Article  Google Scholar 

  54. Kazarinov R.F., and Suris R.A., Sov. Phys. Semicond. 5, 207 (1971)

    Google Scholar 

  55. Sakaki H., IEEE J. Quantum Electronics QE-22, 1845 (1986)

    Article  Google Scholar 

  56. For review on HEMTs, see the following authors in Semiconductor and Semimetals, Willardson R.K., and Beer A.C., eds., Academic Press, vol. 24, 1987: Morkoc, H., and Unlu, H., (p. 105); Linh, N.T., (p. 203); Abe, M., et al., p. 249

    Google Scholar 

  57. Mimura T., et al., Jpn. J. Appl. Phys. 19, L225 (1980)

    Article  MathSciNet  Google Scholar 

  58. Dingle R., et al., Appl Phys. Lett. 33, 665 (1978)

    Article  Google Scholar 

  59. Enoki J., et al., Jpn. J. Appl. Phys. 33, 798 (1994)

    Article  Google Scholar 

  60. Stormer H.L., et al., Appl. Phys. Lett. 59, 1111 (1991)

    Article  Google Scholar 

  61. van Wees B.J., et al., Phys. Rev. Lett. 60, 842 (1988)

    Google Scholar 

  62. Lee P.A., and Stone A.D., Phys. Rev. Lett. 55, 1622 (1985)

    Article  Google Scholar 

  63. Sakaki H., Jpn. J. Appl. Phys. 19, L735 (1980)

    Article  Google Scholar 

  64. Yamada T., and Sone J., Phys. Rev. B. 40, 6265 (1989)

    Article  Google Scholar 

  65. Motohisa J., and Sakaki H., Appl. Phys. Lett. 60, 1315 (1992)

    Article  Google Scholar 

  66. Resonant Tunneling in Semiconductors: Physics and Applications Chang L.L., and Mendez E., eds., NATO ASI series, Kluwer, (1991)

    Google Scholar 

  67. Capasso F., Mohommed K., and Cho Y., IEEE J. Quantum Electronics QE-22, 1953 (1986)

    Google Scholar 

  68. Sakaki H., Matsusue T., and Tsuchiya M., IEEE J. Quantum Electronics. QE-25, 2498 (1989)

    Article  Google Scholar 

  69. Esaki L., and Tsu R., IBM J. Res. Develop. 14, 65 (1970)

    Article  Google Scholar 

  70. Chang L.L., Esaki L., and Tsu R., Appl. Phys. Lett. 24, 593 (1974)

    Article  Google Scholar 

  71. Wascke C., et al., Phys. Rev. Lett. 70, 3319 (1993)

    Article  Google Scholar 

  72. Roskos H.G., et al., Phys. Rev. Lett. 68, 2216 (1992)

    Article  Google Scholar 

  73. Tsuchiya M., and Sakaki H., Jpn. J. Appl Phys. 25, L185 (1986)

    Article  Google Scholar 

  74. Tsuchiya M., Matsusue T., and Sakaki H., Phys. Rev. Lett. 59, (1987)

    Google Scholar 

  75. Tsuchiya M., and Sakaki H., Appl Phys. Lett. 49, 88 (1986)

    Article  Google Scholar 

  76. Tsuchiya M., and Sakaki H., Jpn. J Appl Phys. 30, 1164 (1991)

    Article  Google Scholar 

  77. Sakaki H., and Noguchi H., Jpn. J. Appl. Phys. 28, L314 (1989); and Noguchi, H., Leberton, J.P., and Sakaki, H., Phys. Rev. B 47, 15593 (1993)

    Article  Google Scholar 

  78. Nishizawa J., Abe H., and Kurabayashi T., J. Electrochem Soc. 132, 1194 (1985)

    Google Scholar 

  79. Ushi A., and Sunakawa H., Jpn. J. Appl Phys. 25, L212 (1981); and Ozeki,M, et al., J Vac. Sci. Tech. B 5, 1184 (1986)

    Article  Google Scholar 

  80. Sakaki H., Jpn. J. Appl Phys. 19, L735 (1980); and J. Vac. Sci. and Technol B, (1981)

    Article  Google Scholar 

  81. Stormer H.L., et al., Appl. Phys. Lett. 58, 726 (1991)

    Article  Google Scholar 

  82. Ohno Y., et al., Phys. Rev. B. 52, R11619 (1995)

    Article  Google Scholar 

  83. Yacoby A., Stormer H.L., et al., Phys. Rev. Lett. 77, 4612 (1996)

    Article  Google Scholar 

  84. Fukui T., and Ando S., Electronics Lett. 25, 410 (1989)

    Article  Google Scholar 

  85. Nakumaura Y., et al., Appl. Phys. Lett. 64, 2552 (1994)

    Article  Google Scholar 

  86. Chang Y.C., Chang L.L., and Esaki L., Appl. Phys. Lett. 47, 1324 (1985)

    Article  Google Scholar 

  87. Pfeiffer L., et al., J. Cryst. Growth 127, 849 (1993)

    Article  Google Scholar 

  88. Goni A.R., et al., Appl. Phys. Lett. 61, 1956 (1992)

    Article  Google Scholar 

  89. Wegscheider W., et al., Phys. Rev. Lett. 71, 4071 (1993)

    Article  Google Scholar 

  90. Pfeiffer L.N., et al., Low-Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates, Eberl K. et al., eds., NATO, ASI series, E. 298 Kluwer, 93, 1995

    Google Scholar 

  91. Someya T., Akiyama H., and Sakaki H., Phys. Rev. Lett. 74, 3664 (1995); and J. Appl. Phys. 79, 2522 (1996)

    Article  Google Scholar 

  92. Someya T., Akiyama H., and Sakaki H., Phys. Rev. Lett. 76, 2965 (1996); and also Appl Phys. Lett. 66, 3672 (1995)

    Article  Google Scholar 

  93. Kapon E., Hwang D.M., and Bhat R.B., Phys. Rev. Lett. 63, 430 (1989)

    Article  Google Scholar 

  94. Kapon E., et al., Surf. Sci. 267, 593 (1992)

    Article  Google Scholar 

  95. Tsukamoto S., et al., J. Appl Phys. 71, 533 (1992)

    Article  Google Scholar 

  96. Arakawa Y., Solid State Electronics 37, 523 (1994)

    Article  Google Scholar 

  97. Koshiba S., et al., Appl. Phys. Lett. 64, 363 (1994)

    Article  Google Scholar 

  98. Koshiba S., et al., J. Cryst. Growth 150, 332–326 (1995)

    Article  Google Scholar 

  99. Akiyama H., et al., Phys. Rev. Lett. 72, 924 (1994)

    Article  Google Scholar 

  100. Fukui T., et al., Appl. Phys. Lett. 58, 2018 (1991)

    Article  Google Scholar 

  101. Goldstein L., Appl. Phys. Lett. 47, 1099 (1985)

    Article  Google Scholar 

  102. Leonard D., et al., Appl. Phys. Lett. 63, 3203 (1993); and Ahopelto, J., et al., Jpn. J. Apl. Phys. 32, L32 (1993)

    Article  Google Scholar 

  103. Schmidt O.G., et al., Electronics Lett. 32, 1302 (1996); and Shoji, H., et al., IEEE Photon Tech. Lett. 7, 1985 (1990)

    Article  Google Scholar 

  104. Drexler H., et al., Phys. Rev. Lett. 73, 2252 (1994)

    Article  Google Scholar 

  105. For a recent review, R. Nötzel Semicond. Sci. and Technol. 11, 1365 (1996)

    Article  Google Scholar 

  106. Sakaki H., et al., Appl. Phys. Lett. 67, 3433 (1995)

    Google Scholar 

  107. Xie Q., et al., Phys. Rev. Lett. 75, 2542 (1995)

    Article  Google Scholar 

  108. Solomon G.S., et al., Phys. Rev. Lett. 76, 952 (1996)

    Article  Google Scholar 

  109. Sugiyama Y., et al., Jpn. J. Appl. Phys. 35, 1320 (1996)

    Article  Google Scholar 

  110. Yusa G., and Sakaki H., Electronics Lett. 32, 491 (1996)

    Article  Google Scholar 

  111. Mui D.S.L., et al., Appl. Phys. Lett. 66, 1620 (1995); Sseifert, et al., ibid 68, 1684 (1996)

    Article  Google Scholar 

  112. Kitamura M., et al., Appl Phys. Lett. 66, 3663 (1995)

    Article  Google Scholar 

  113. Petroff P.M., Gossard A.C., and Wiegmann W., Appl. Phys. Lett. 45, 620 (1984)

    Article  Google Scholar 

  114. Petroff P.M., et al., J. Cryst. Growth 111, 360 (1991)

    Article  Google Scholar 

  115. Miller M.S., et al., J. Cryst. Growth 111, 323 (1991)

    Article  Google Scholar 

  116. Bloch J., Bockelmann V., and Laruelle R., Solid State Electronics 37, 527 (1994); Tanaka, M., and Sakaki, H., Appl. Phys. Lett. 54, 1326 (1989)

    Article  Google Scholar 

  117. Fukui T., and Saito H., Jpn. J. Appl. Phys. 29, L731 (1990)

    Article  Google Scholar 

  118. Kanbe H., et al., Appl. Phys. Lett. 58, 2969 (1991)

    Article  Google Scholar 

  119. Nakata Y., et al., Proc. 9th Int. Conf. on MBE, 1996; (J. Cryst. Growth 1997 to be published.)

    Google Scholar 

  120. Kasu M., and Fukui T., Jpn. J. Appl. Phys. 31, 964 (1992); and Ishizaki, J., Ohkuri, K., and Fukui, T., Jpn. J. Appl. Phys. 35 (Part-1) 1280 (1996)

    Article  Google Scholar 

  121. Inoue K., et al., J. Cryst. Growth 127, 1041 (1993)

    Article  Google Scholar 

  122. Nakamura Y., Koshiba S., Sakaki H., Proc. of 9th Int. Conf. on MBE (1996), (J. Cryst. Growth 1997 to be published.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sakaki, H. (1999). Fabrication of Atomically Controlled Nanostructures and Their Device Application. In: Timp, G. (eds) Nanotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0531-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0531-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6805-5

  • Online ISBN: 978-1-4612-0531-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics