Skip to main content

Nanostructures in Motion: Micro-Instruments for Moving Nanometer-Scale Objects

  • Chapter

Abstract

This chapter describes the integration of micro-actuators and nanometer-scale tips to manipulate and control things on a small scale. The micro-instruments or micro-robots are made using micro-machining technology. The micro-machining field has been given the generic name micro-electromechanical systems or MEMS. This field is quite broad and includes integrated micro-sensors, micro-actuators, micro-instruments, micro-optics and micro-fluidics, and includes applications ranging from accelerometers[2] to deploy an automobile airbag, ink jet printer heads[3,4]; an array of movable mirrors for color projection displays[5]; to atom probes for imaging and transporting atoms [6].

“ I would like to describe a field in which little has been done, but in which an enormous amount can be done in principle.”

“ What I want to talk about is the problem of manipulating and controlling things on a small scale.”

Richard P. Feynman, “There’s Plenty of Room at the Bottom”, December 26, 1959 [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feynman Richard P., J MEMS 1, (1992); Transcript of a talk given by R.P. Feynman at the APS Meeting, California Institute of Technology, December 26, 1959

    Google Scholar 

  2. MacDonald G.A., Sensors and Actuators A21-A23, 303–307, (1990)

    Article  Google Scholar 

  3. Nielsen Neils J., Hewlett-Packard Journal, 4–10 (1985)

    Google Scholar 

  4. Baker J.P., et al, Hewlett-Packard Journal 6–15 (August 1988)

    Google Scholar 

  5. Hornbeck L.J., IEEE International Electron Devices Meeting Tech. Digest 381–384 (1993)

    Google Scholar 

  6. Xu Y., Miller S.A., and MacDonald N.C., AppL Phys. Lett. 67, 2305–2307 (1995)

    Article  Google Scholar 

  7. Tang W.C., Nguyen T.H., and Howe R.T., Sensors and Actuators 20, 25–32 (1989)

    Article  Google Scholar 

  8. Sze S.M., Semiconductor Sensors, New York: John Wiley and Sons, Inc., 1994

    Google Scholar 

  9. Mehregany M., and Tai Y.C., J. Micromech. Microeng. 1, 73–85 (1991)

    Article  Google Scholar 

  10. Linden C, et al., J. Micromech. Microeng. 2, 122–132 (1992)

    Google Scholar 

  11. Markus K.W., et al., “MEMS Infrastructure: the Multi-User MEMS Processes (MUMPs), Proceedings of the SPIE Micro-machining and Micro-fabrication Conference, 1995, Vol.2639-08, pp.54–63

    Google Scholar 

  12. Cole B.E., et al., “512×512 Infrared Scene Projector Array for Low-Background Simulations,” Tech Digest from Solid-State Sensor and Actuator Workshop, Hilton Head S.C., 1994

    Google Scholar 

  13. Mastrangelo C.H., and Hsu C.H., J. MEMS 2, 33–43 (1993); J. MEMS, 2, 44-55 (1993)

    Article  Google Scholar 

  14. Gardner J.W., Micro-sensors Principles and Applications, Chichester, England: John Wiley and Sons Ltd., 1994

    Google Scholar 

  15. Middelhoek S., and Audet S.A., Silicon Sensors, London: Harcourt Brace Jovanovich Publishing, 1989

    Google Scholar 

  16. MacDonald N.C., et al., Sensors and Actuators 20, 123–133 (1989)

    Article  Google Scholar 

  17. Hoffman W., et al., J. of Microelec. Eng. 523–526 (1996)

    Google Scholar 

  18. Ehrfeld W., et al., “1988 LIGA Process: Sensor Construction Techniques via x-ray Lithography,“ Tech. Digest from IEEE Solid-State Sensor and Actuator Workshop, Hilton Head SC, 1988

    Google Scholar 

  19. Guckel H., et al., J. Micromech. Microeng. 1, 135–138 (1991)

    Article  Google Scholar 

  20. Ahm C.H., and Allen M.G., J. MEMS 2, 15–22 (1993)

    Article  Google Scholar 

  21. Shacham-Deamand Y., J. Micromech. Microeng. 1, 66–72 (1991)

    Article  Google Scholar 

  22. Bean K.E. IEEE Trans. Electron Devices ED 25, 1185–1192 (1978)

    Article  Google Scholar 

  23. Kern W. RCA Reveiw 39, 278–307

    Google Scholar 

  24. Danel J.S., and Delapierre G., J. Micromech. Microeng. 1, 187–198 (1991)

    Article  Google Scholar 

  25. Gianchandani Y.B., and Najafi K., J. Microelectromech. Sys. 1, 77–85 (1992)

    Article  Google Scholar 

  26. Tanghe S.J., and Wise K.D., IEEE J. of Solid-State Circuits 27, 1819–1825 (1992)

    Article  Google Scholar 

  27. Zhang Z.L. and MacDonald N.C., J. Micromech. Microeng. 2, 31–38 (1992)

    Article  Google Scholar 

  28. Shaw K.A., Zhang Z.L., and MacDonald N.C., Sensors and Actuators A 40, 63–70 (1994)

    Article  Google Scholar 

  29. Zhang Z.L., and MacDonald N.C., J. MEMS 2, 66–72 (1993)

    Article  Google Scholar 

  30. Zhang Z.L., and MacDonald N.C., J. Vac. Sci. Technol. B 4, 2538–2543 (1993)

    Article  Google Scholar 

  31. Yao J., Arney S., and MacDonald N.C., J. of Micro-Electromechanical Systems 1, 14–22 (1992)

    Article  Google Scholar 

  32. Jazairy A., and MacDonald N.C., J. of Microelec. Eng. 527-530 (1996)

    Google Scholar 

  33. Shaw K.A., and MacDonald N.C., “Integrating SCREAM Micro-Machined Devices With Integrated Circuits,” The Ninth Annual International Workshop on MEMS, (MEMS’ 96), IEEEProc. 1996, pp.44–48

    Google Scholar 

  34. Trimmer W; Editor-in-Chief, J. of Micro-Electromech. Sys., A Joint IEEE/ASME Publication on Microstructures, Micro-actuators, Micro-sensors, and Microsystems, 1, March 1992

    Google Scholar 

  35. Carr W.N., and Guckel H.; Editors-in-Chief, J. of Micro-Mech. and Micro-Eng., Struc., Devices and Sys., Institute of Physics Publishing 1 No.1, March 1991

    Google Scholar 

  36. Middelhoek S.; Editor-in-Chief, Sensors and Actuators, A Special Issue Devoted to Micromechanics 20, (1989)

    Google Scholar 

  37. Reichl H.; Editor, Microsystem Technologies, Sensors Actuators System Integration, Springer International Publishing 1, (1994)

    Google Scholar 

  38. IEEE Micro Electro Mechanical Systems (MEMS) Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, Currently Eight Proceedings (Published in odd numbered years from 1981).

    Google Scholar 

  39. Transducers International Conference on Solid-State Sensors and Actuators Digest ofTechnical Papers, Currently Eight Conference Proceedings (Published in odd numberedyears from 1981).

    Google Scholar 

  40. Solid-State Sensor and Actuator Technical Digest, Sponsored by the Transducers Research Foundation, Currently Six Proceedings (Published in even numbered years from 1984).

    Google Scholar 

  41. Jardine A.P.; Editor, SPIE Smart Structures and Materials 1995 Proceedings, 2441, San Diego, CA., February 27–28, 1995

    Google Scholar 

  42. Motamedi M.E., and Beiser L.; eds., SPIE Micro-Optics /Micromechanics and LaserScanning and Shaping, 2383, San Jose, CA., February 7–9, 1995

    Google Scholar 

  43. Hjort K., Söderkvist J., and Schweitz J.A., J. Micromech. Microeng. 4, 1–13 (1994)

    Article  Google Scholar 

  44. Peterson K.E., “Silicon as a mechanical material,” in Proc. IEEE, 70, 1982, pp.420–457

    Article  Google Scholar 

  45. Feynman R., J. MEMS, 2, 4–14 (1993). (Manuscript from a talk given by Richard Feynman on February 23, 1983 at the Jet Propulsion Laboratory, Pasadena, CA)

    Article  Google Scholar 

  46. Gabriel K.J., Scientific American 273, 150–153 (1995)

    Google Scholar 

  47. Woodson H.H., and Melcher J.R., Electromechanical Dynamics Part I: Discrete Systems; Electromechanical Dynamics Part II: Fields, Forces, and Motion; Electromechanical Dynamics Part III: Elastic and Fluid Media, New York: John Wiley & Sons, 1968

    Google Scholar 

  48. Wiesendanger R., Scanning Probe Microscopy and Spectroscopy, Methods and Applications, Cambridge: Cambridge University Press, 1994, pp.91–97

    Book  Google Scholar 

  49. Albrecht T.R., et al., J. Vac. Set TechnoL A 8, 317 (1990)

    Article  Google Scholar 

  50. Minne S.C., et al., J. Vac. Sci. Technol., B 13, 1380–1385 (1995)

    Article  Google Scholar 

  51. Yao J.J., Arney S.C., and MacDonald N.C., Sensors and Actuators A, 40, 74–84 (1994)

    Article  Google Scholar 

  52. Ramo S., Whinnery J.R., and VanDuzer T., Fields and Waves in Communication Electronics, Second Edition, New York: John Wiley & Sons, 1984

    Google Scholar 

  53. Gilbert J.R., Ananthasuresh G.K., and Senturia S.D., “3D Modeling of Contact Problems and Hysteresis in Coupled Electro-Mechanics,” presented at The Ninth Annual International Workshop on MEMS, (MEMS’ 96), IEEE Proc, San Diego, CA, February 11–15, 1996

    Google Scholar 

  54. Timoshenko S.P., and Goodier J.N., Theory of Elasticity (1982)

    Google Scholar 

  55. Milhailovich R.E., and MacDonald N.C., (to be published in Sensors and Actuators, 1996)

    Google Scholar 

  56. Tang W.C., Lim M.G., and Howe R.T., J. MEMS 1, 170–178 (1992)

    Article  Google Scholar 

  57. Jazairy A., and MacDonald N.C., “Very High Aspect-Ratio Wafer-free Silicon Micromechanical Structures,” SPIE’s 1995 Symposium on Microlithography and Metrologyin Micromachining, Postek M.T., ed., Proc. SPIE 2640, 1995, pp.111–120

    Google Scholar 

  58. Huang X.T., Chen L.-Y., and MacDonald N.C., “A Low Temperature Process for Very High Aspect-Ratio Silicon Microstructures Using SOG Etch Mask,” SPIE’s 1995 Symposium on Microlithography and Metrology in Micromachining, Postek M.T., ed., Proc. SPIE 2640, 1995, pp.178–183

    Google Scholar 

  59. Saif M.T.A., and MacDonald N.C., be published in Sensors and Actuators 1996)

    Google Scholar 

  60. Saif M.T.A., and MacDonald N.C., “Micro Mechanical Single Crystal Silicon Fracture Studies-Torsion and Bending,” The Ninth Annual International Workshop on MEMS, (MEMS’ 96), IEEE Proc., 1996, pp. 105–109

    Google Scholar 

  61. Saif M.T.A., and MacDonald N.C., (to be published in J. of Micro-Electromech. Sys. 1996)

    Google Scholar 

  62. Das J.H., and MacDonald N.C., J. Vac. Sci. and Technol B 13, 2432–2435 (1995)

    Article  Google Scholar 

  63. MacDonald N.C., “SCREAM Micro-Electro-Mechanical Systems,” (Invited) Special Issue of Journal of Microelectronic Engineering on Nanotechnology, (to be published July 1996)

    Google Scholar 

  64. Thomson W.T., Theory of Vibration With Applications, Third Edition, Englewood Cliffs, NJ: Prentice Hall, 1

    Google Scholar 

  65. Gorman D.J., Free Vibration Analysis of Beams and Shafts, New York: John Wiley &Sons, 1975

    Google Scholar 

  66. Yao J.J., and MacDonald N.C., J. Micromech. Microeng. 5, 257–264 (1995)

    Article  Google Scholar 

  67. McMillan J.A., and MacDonald N.C., “Nonlinear Vibrations of Submicron-Scaled Single Crystal Silicon Resonant Devices,” presented at Proc. 184th Meeting of The Electrochemical Society, New Orleans, LS, 1993

    Google Scholar 

  68. McMillan J.A., “High Frequency Mechanical Resonant Devices,” Ph.D. Dissertation, Cornell University, August 1993

    Google Scholar 

  69. Adams S.G., Bertsch F., and MacDonald, N.C., “Independent Tuning of the Linear and Nonlinear Stiffness Coefficients of a Micromechanical Device,” in IEEE Proc., 1996, pp.32–37

    Google Scholar 

  70. Cho Y-H., Pisano A.P., and Howe R.T., J. MEMS 3, 81–87 (1994)

    Article  Google Scholar 

  71. Nguyen C.t.-C, and Howe R.T., “Quality Factor Control for Micromechanical Resonators,” in IEEE International Electron Devices Meeting, Tech. Digest, 1992, pp.505–508

    Google Scholar 

  72. Braginsky V.B., Mitrofanov V.P., and Panov V.I., Systems with Small Dissipation, Chicago: The University of Chicago Press, 1985

    Google Scholar 

  73. Beerschwinger U., et al., J. Micromech. Microeng. 4, 95–105 (1994)

    Article  Google Scholar 

  74. Tai Y.C., and Muller R.S., Sensors and Actuators A21-A23, 180–183 (1990)

    Google Scholar 

  75. Mehregany M., Senturia S.D., and Lang J.H., “Friction and wear in micro-fabricated harmonic side-drive motors,” in Tech. Digest of 4th Int. Conf. on Solid-State Sensors and Actuators, 1990, pp.17–422

    Google Scholar 

  76. Gabriel K.J., et al., Sensors and Actuators A21-A23, 184–188 (1990)

    Article  Google Scholar 

  77. Prasad R. and MacDonald N.C., “Design, Fabrication and Measurements of Friction in SCREAM Micro-Devices,” in Transducers’ 95-The 8th International Conference on Solid-State Sensors and Actuators, 2, 1995, pp.52–55

    Article  Google Scholar 

  78. Smith D.P.E., Rev. Sci. Iustrum. 66, (1995)

    Google Scholar 

  79. Mihailovich R.E., and MacDonald N.C., J. Vac. Sci. and Technol. B 13, 2545–2549 (1995)

    Article  Google Scholar 

  80. Ogo I., and MacDonald N.C., J. Vac. Sci. and Technol. B 12, 3285–3288 (1994)

    Article  Google Scholar 

  81. Bay J., et al., J. Micromech. Microeng. 5, 161–165 (1995)

    Article  Google Scholar 

  82. Mason M.T., and Salisbury Jr. J.K., Robot Hands and the Mechanics of Manipulation, Cambridge, MA: The Massachusetts Institute of Technology Press, 1985

    Google Scholar 

  83. Miller S.A., Xu Y., and MacDonald N.C., “Micro-Mechanical Cantilevers and Scanning Probe Microscopes,” in Proc. SPIE 2640, Postek M.T., ed., 1995, pp.45–52

    Google Scholar 

  84. Spallas J.P., and MacDonald N.C., J. Vac. Sci. Technol. B 11 437–440, (1993)

    Article  Google Scholar 

  85. Yao J.J., and MacDonald N.C., Scanning Microscopy 6, 939–942, (1992)

    Google Scholar 

  86. Prasad R., and MacDonald N.C., “Design, Fabrication and Measurements of Friction in SCREAM Micro-Devices,” in Transducers’ 95-The 8th International Conference on Solid-State Sensors and Actuators, 2, 1995, pp.52–455

    Article  Google Scholar 

  87. Carr W.N., Editor-in-Chief, Journal of Micro-mechanics and Micro-Engineering, Special Issue on Micro-Fluidics, 4 Institute of Physics Publishing, (1994); Gravesen, P., Branebjerg, J., and Jensen, O.S., Micro-mech. Microeng. 3, 168-182 (1993)

    Google Scholar 

  88. Niu Q., Chang M.C., and Shih C.K., Physical Review B 51, 5502–5505 (1995)

    Article  Google Scholar 

  89. Avouris P., Ace. Chem. Res. 28, 95–102 (1995)

    Article  Google Scholar 

  90. Minne S.C., et al., Appl. Phys. Lett. 66, 703–705 (1995)

    Article  Google Scholar 

  91. Shen T.-C, et al., Science 268, 1590–1592 (1995)

    Article  Google Scholar 

  92. Kramer N., et al., J Vac. Sci. Technol. B 13, 805–811 (1995)

    Article  Google Scholar 

  93. Serry F.M., Walliser D., and Maclay G.J., J. MEMS 4, 193–205 (1995)

    Article  Google Scholar 

  94. Casimir H.B.G., “On the Attraction Between Two Perfectly Conducting Plates,” in Proc. Koninkl. Ned. Akad. Wetenschap, 51, 1948, pp.793–795

    MATH  Google Scholar 

  95. Brown L.S., and Maclay G.J., Phys. Rev., 184, 1272–1279 (1969)

    Article  Google Scholar 

  96. Schwinger J., DeRaad Jr. L.L., and Milton K.A., Ann. Phys. 115, 1–23 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

MacDonald, N.C. (1999). Nanostructures in Motion: Micro-Instruments for Moving Nanometer-Scale Objects. In: Timp, G. (eds) Nanotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0531-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0531-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6805-5

  • Online ISBN: 978-1-4612-0531-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics