Skip to main content

Nano-electronics for Advanced Computation and Communication

  • Chapter
Nanotechnology

Abstract

The transistor was invented in 1947[1] for use as an amplifier and electronic switch. The invention grew in economic importance as it became a smaller, lower power, and more reliable alternative to the mature vacuum tube technology, but for many years it showed lower performance and often at higher cost than the earlier technology. So, the transition was slow. We often talk about the revolution caused by the invention of the transistor, but, in fact, there was a relatively gradual evolution that continued for decades: e.g., the development of silicon bipolar junction transistors (BJT) with a diffused emitter and base circa 1956[2], followed by the development of planar silicon transistors[3] and the metal-oxide-semiconductor field effect transistor (MOSFET) circa 1960, etc.[4,5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardeen J., and Brattain W.H., Phys. Rev. 74, 230–231 (1948); Schockley W., Bell Syst. Tech. J. 28, 435-439 1949; Schockley, W., Proc. IRE 41, 970(1953)

    Article  Google Scholar 

  2. Tanebaum M, and Thomas D.E., Bell Syst. Tech. J. 35, 1 (1956)

    Article  Google Scholar 

  3. Hoerni J.A.,“Planar Silicon Transistor and Diodes,” IRE Electron Devices Meeting, Washington, D.C. 1960

    Google Scholar 

  4. Atalla, M.M., U.S. Patent 3,206,670 (filed in 1960 issued in 1965)

    Google Scholar 

  5. Kahng D., and Atalla M.M., IRE-IEEE Solid-State Device Research Conference, Carnegie Institute of Technology, Pittsburgh, PA, 1960; Kahng, D., U.S. Patent 3,102,230 (filed in 1960, issued in 1963)

    Google Scholar 

  6. Several patents were filed in 1959 on different aspects of the integrated circuit. The historical development of the integrated circuit is annotated in: Kilby J.S., IEEE Trans. Electron Devices ED-23, 648 (1976)

    Article  Google Scholar 

  7. Moore G.E., IEEE IEDM Tech. Dig. 11–13, (1975)

    Google Scholar 

  8. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose CA (1994)

    Google Scholar 

  9. Mayo J.S., Scientific American 255, 4, 58–65(1986)

    Article  Google Scholar 

  10. Makimoto T., “Market and Technology Trends in the Nomadic Age,” Symp. on VLSI Tech., 1996, pp. 6–9

    Google Scholar 

  11. Bois D., L’Onde Electrique 73(6), 4–10 (1993)

    Google Scholar 

  12. Ogirima M., “Process Innovation for Future Semiconductor Industry,” IEEE 1993 Symp. on VLSI Tech. pp. 1–5

    Google Scholar 

  13. Miller D.L., Przybysz J.X., and Kang J.H., IEEE Trans. Appl. Superconductivity 3, 2728–2731 (1993)

    Article  Google Scholar 

  14. Cray Seymour Enabling Technologies for PetaFLOPS Computing, Sterling T., Messina P., and Smith P.H., eds., Cambridge MA: MIT Press, 1995

    Google Scholar 

  15. Hoeneisen B., and Mead C.A., Solid State Electron. 15, 819–829 (1972)

    Article  Google Scholar 

  16. Keyes R.W., “Physical Limits in Digital Electronics,” Proc. IEEE 63, 1975, pp. 740–767

    Article  Google Scholar 

  17. Feynman R., Optics News, 11–20 (1985)

    Google Scholar 

  18. Keyes R.W., VLSI Electronics: Micro structure Science, Einspruch Norman G., ed., NewYork: Academic Press, 1981, vol. 1, ch. 5, pp. 185–229

    Google Scholar 

  19. Solomon P.M., “A Comparison of Semiconductor Devices for High-Speed Logic,” Proc. IEEE, 70 1982, pp. 489–509

    Article  Google Scholar 

  20. Davidson A., and Beasley M.R., IEEE J. Solid-State Cir. SC-14, 758–762 (1979)

    Article  Google Scholar 

  21. Bate R.T., VLSI Electronics: Microstructure Science 5, 359–386 (1982)

    Google Scholar 

  22. “Low Power Electronics,” Terman L.M., and Yan R.H., eds., Proc. IEEE 83, 1995, pp. 495–697

    Google Scholar 

  23. Warwick C.A., and Ourmazd A., IEEE Trans. Semicond. Manufacturing, 6, 3, pp284–289 (1993)

    Article  Google Scholar 

  24. Chatterjee Pallab K., in VLSI Electronics: Microstructure Science, Einspruch Norman G., and Huff Howard eds., New York: Academic Press, 1985, vol. 12, ch. 7, pp. 307–383

    Google Scholar 

  25. Kohyama S., “Semiconductor Technology Crisis and Challenges Towards the Year 2000,” in IEEE 1994 Symp. VLSI Tech., pp. 5–8

    Google Scholar 

  26. Barrett C.R., “Microprocessor Evolution and Technology Impact,” IEEE 1993 Symp. on VLSI Tech., pp. 7–10

    Google Scholar 

  27. Warwick Colin A., et al, AT&T. Tech. Journ. 72 (5), pp. 50–59 (1993)

    Article  Google Scholar 

  28. Ko P.K., in VLSI Electronics: Microstructure Science, Einspruch Norman G., and Huff Howard, eds., New York: Academic Press, 1989,vol. 18, ch.l, pp. 1–37

    Google Scholar 

  29. Tsividis Y.P., The Operation and Modeling of the MOS Transistor, New York: McGraw Hill, 1987

    Google Scholar 

  30. Mead C, Analog VLSI and Neural Systems, Addison-Wesley VLSI System Series, Reading, MA (1989) p. 54

    Google Scholar 

  31. Brews J.R., in Submicron Intergrated Circuits, Watts R.K., ed., New York: John Wiley &Sons, 1989, pp. 269–331

    Google Scholar 

  32. Christie P., “A Fractal Analysis of Interconnection Complexity,” Proc. IEEE 81, 1993, pp. 1492–1

    Article  Google Scholar 

  33. Donath W.E., IEEE Trans. Circuits System CAS-26, pp. 272–277 (1979)

    Article  Google Scholar 

  34. Davis J.A., De V., Meindl J., 1996 IEEE Symp. VLSI Tech. Digest 78–79

    Google Scholar 

  35. Ferry D.K., Grondin R.O., and Akers L.A., in Submicron Intergrated Circuits, Watts R.K., ed., New York: John Wiley & Sons, 1988, pp. 377–412

    Google Scholar 

  36. Meindl J.D., and Davis J., Mat. Chem. and Phys. 41, pp. 161–166 (1995)

    Article  Google Scholar 

  37. Mead C, and Conway L., Introduction to VLSI Systems, Reading MA: Addison-Wesley, 1980

    Google Scholar 

  38. von Neumann J., The Computer and the Brain, New Haven, CT: Yale Univ. Press, 1958

    MATH  Google Scholar 

  39. Lo A.W., in Micropower Electronics, Keonjian E., ed., New York: McMillian, 1964, pp. 19–39

    Chapter  Google Scholar 

  40. Swanson Richard M., and Meindl James D., IEEE Journ. of Solid State Cir., SC-7, 14–153 (1972)

    Google Scholar 

  41. Glasser Lance A., and Dobberpuhl Daniel W., The Design and Analysis of VLSI Circuits, Reading, MA: Addison-Wesley Publishing Co., 1985, pp. 208–210

    Google Scholar 

  42. Pimbley J.M., et al., in VLSI Electronics Microstructure Science, New York: Academic Press, 1989, vol. 19

    Google Scholar 

  43. Yoshimura H., et al., IEDM Tech. Dig. pp909–912, Dec. (1992)

    Google Scholar 

  44. Andoh T., Furukawa A., and Kunio T., IEEE 1994 IEDM, 79–83

    Google Scholar 

  45. Glasser L.A., and Hoyet L.P.J., “Delay and Power Optimization in VLSI Circuits,” in 21st Design Automation Conf, Albuquerque, NM, pp. 529–535 1984

    Google Scholar 

  46. Fischetii M.V., and Laux S.E., Phys. Rev B 48, 2244–2274 (1993) and Fischetii M.V., and Laux S.E., Phys. Rev B 88, 9721-9745 (1988)

    Article  Google Scholar 

  47. Stork J.M.C., Proc. IEEE 83 (4), 607–618 (1995)

    Article  Google Scholar 

  48. Kobayashi T., and Sakurai T., “Self-Adjusting threshold voltage scheme for low-voltage high speed operation,” in IEEE 1994 Custom Integrated Circ. Conf., p. 271

    Google Scholar 

  49. Sun S.W., and Tsui P.G.Y., “Limitations of CMOS supply voltage scaling by MOSFET threshold voltage variation,” in IEEE 1994 Custom Integrated Circ. Conf., p. 267

    Google Scholar 

  50. Mii Y., et al., “An Ultra-Low Power 0.1 µJim CMOS,” in 1994 IEEE Symposium on VLSITech. Digest of Technical Papers, p. 9 (1994)

    Google Scholar 

  51. Landauer R., IBM Journ. Res. Dev., 5, 183 (1961)

    Article  MathSciNet  Google Scholar 

  52. Nishizawa J., et al, IEEE Trans. Electron Devices 27, 1640–1649 (1980)

    Article  Google Scholar 

  53. Coones M., et al., SPIE Microelectronics Manufacturing and Reliability 1802, 10–23

    Google Scholar 

  54. Seevinck E., List F.J., and Lohstroh J., IEEE Journ. Solid-State Cir. SC-22, 748–754 (1987)

    Article  Google Scholar 

  55. Burnett D., et al, “Implication of Fundamental Threshlold voltage variations for High Density SRAM and Logic Circuits,” in 1994 Symp. VLSI Tech. Digest, pp. 15–16

    Google Scholar 

  56. Sakata T., et al, IEEE J. Solid State Cir. 29, 761–769 (1994)

    Article  Google Scholar 

  57. Kanai H., IEEE Trans. Components, Hybrids, Manuf. Tech. CHMT-4(2), 173 (1981)

    Article  Google Scholar 

  58. Bar-Cohen A., IEEE Trans. Comp. Hybrids, Manuf. Tech. CHMT-19, 159 (1987)

    Article  Google Scholar 

  59. Powers R.A., Proc. IEEE 83, 687 (1995)

    Article  Google Scholar 

  60. Kramer A., et al, “Adiabatic Computing with the 2N-2N2D Logic Family”, in 1994 IEEE Symp. on VLSI Circuits Digest, pp. 25–26

    Google Scholar 

  61. Younis S.G., and Knight T.F., “Practical implementation of charge recovering asymptotically zero power CMOS,” in Research on Integrated Systems: Proceedings of the 1993 Symposium, Cambridge, MA: MIT Press, 1993

    Google Scholar 

  62. Koller J.G., and Athas W.C., “Adiabatic switching, low energy computing, and the physics of storing and erasing information,” in Proceedings of Physics of Computation Workshop, Dallas, TX, October 1992

    Google Scholar 

  63. Dickinson A.G., and Denker J.S., “Adiabatic Dynamic Logic,” AT&T Bell Laboratories, Internal Memorandum, January (1993)

    Google Scholar 

  64. Johnson Barry W., Design and Analysis of Fault-Tolerant Digital Systems, New York: Addison Wesley, 1989

    Google Scholar 

  65. von Neumann J., in Automata Studies, Shannon C.E., and McCarthy J., eds., Princeton, NJ: Princeton University Press, 1956, pp. 329–378

    Google Scholar 

  66. Takeda E., Physics World 48–52 (March 1993)

    Google Scholar 

  67. Fu K.Y., Appl. Phys. Lett. 65, 833–835 (1994)

    Article  Google Scholar 

  68. Woods M.H., “The implications of scaling on VLSI reliability,” in Proc. 22nd Annual International Reliability Physics Symposium, 1984

    Google Scholar 

  69. Sofield C.J., and Stoneham A.M., Semicond. Sci. Technol 10, 215–244 (1995)

    Article  Google Scholar 

  70. Moazzami R., and Hu C, IEEE Trans. Elec. Dev. TED-37, 1643 (1990)

    Article  Google Scholar 

  71. Schuegraf K.F., King C.C., and Hu C., “Ultra-thin Silicon disoxide Leakage Current and Scaling Limit,” in 1992 Symposium on VLSI Technology Digest of Technical Papers, 1992, p. 18

    Google Scholar 

  72. DiMaria D.J., Appl Phys. Letter 51, 655–658 (1987)

    Article  Google Scholar 

  73. Itsumi M., and Muramoto S., “Gate Oxide Thinning Limit Influenced by Gate Materials,”1985 Symposium on VLSI Technology, Japan Society of Applied Physics, p.22

    Google Scholar 

  74. Maserjian J., J. Vac. Sci. Technol. 11, 996–1003 (1974)

    Article  Google Scholar 

  75. Lenzlinger M., and Snow E.H., J. Appl. Phys. 40, 278 (1969)

    Article  Google Scholar 

  76. Hu C, J. Vac. Sci. Technol. B 12, 3237–3241 (1994)

    Article  Google Scholar 

  77. Schuegraf K.F., Park D., and Hu C., “Reliability of Thin SiO2 at Direct-Tunneling Voltages,” IEEE 1994IEDM, pp. 609–613

    Google Scholar 

  78. Murrell M.P., et al, Appl. Phys. Lett. 62, 786 (1993)

    Article  Google Scholar 

  79. Momose H.S., et al., IEEE IEDM Tech. Dig. 593–596, (1994)

    Google Scholar 

  80. Heyns M., et al., 1992 Extended Abstracts, Int. Conf. on Solid State Devices and Materials, Tsukuba, Japan, p. 187

    Google Scholar 

  81. M. Hirose et al, Journ. Vac. Sci. Tech. A 12, 1864 (1994)

    Article  Google Scholar 

  82. Depas M., et al., Proc. 2nd Int. Symp on Ultra Clean Processing of Silicon Surfaces, Heyns H., et al ed., (Lueven: Uitgeverij Acco), 1994, p. 319

    Google Scholar 

  83. Tang M., et al., Appl. Phys. Lett. 64, 748–750 (1994)

    Article  Google Scholar 

  84. Hartstein A., Ning T.H., and Folwer A.B., Surf. Sci. 58, 178–181 (1976)

    Article  Google Scholar 

  85. Tang Mau-Tsu, et al., Appl. Phys. Lett. 62 (24), 3144–3146 (1993)

    Article  Google Scholar 

  86. Hahn P.O., and Henzler M., J. Vac. Sci. Tech. A 2, 574 (1984)

    Article  Google Scholar 

  87. Krylov M.V., and Suris R.A., Sov. Phys. JETP 61 (6), 1303 (1985)

    Google Scholar 

  88. Raikh M.E., and Ruzin I.M., in Mesoscopic Phenomena in Solids, Altshuler B.L., Lee P.A., and Webb R.A., eds., Elsevier Science, 1991, pp. 315–368

    Google Scholar 

  89. Ono M., et al, IEEE IEDM Tech. Dig. 119–122 (1993)

    Google Scholar 

  90. Meindl J.D., IEEE Trans, on Electronic Devices ED-31, 11 1555–1561 (1984)

    Article  Google Scholar 

  91. Landman B.S., and Russo R.L., IEEE Trans. Computers, C-20, 1469–1479 (1971)

    Article  Google Scholar 

  92. Also see: Chiba T., IEEE Trans. Comput. C-27, 319 (1975)

    Article  Google Scholar 

  93. Semiconductor Technology Workshop Working Group Reports, Semiconductor Industry Association, San Jose, CA (1992)

    Google Scholar 

  94. Dennard R.H., et al., IEEE Journ. Solid State Circuits SC-9, No. 5, 256 (1974)

    Article  Google Scholar 

  95. Bakoglu H.B., Circuits, Interconnections and Packaging for VLSI, New York: Addison-Wesley, 1990

    Google Scholar 

  96. Rahmat K. et al., IEEE 1995 IEDM 245–248

    Google Scholar 

  97. Frank D.J., Laux S.E., and Fischetii M.V., IEEE IEDM Tech. Digest 553–556, 1992

    Google Scholar 

  98. Brews J.R., et al., lEEE Elec. Dev. Lett. EDL-1, (1), 2–4, (1980)

    Article  Google Scholar 

  99. Yan R.H., et al., IEEE Trans. Elec. Dev. ED-39, 1704 (1992)

    Article  Google Scholar 

  100. Yan R.H., et al., Appl Phys. Lett. 59, 3315 (1991)

    Article  Google Scholar 

  101. Aoki M., et al., IEEE IEDM Tech. Dig. 939–943 (1990)

    Google Scholar 

  102. Hori A., et al., “A 0.05 μm-CMOS with Ultra Shallow Source/Drain Junctions Fabricated by 5 keV Ion Implantation and Rapid Thermal Annealing,” IEEE 1994 IEDM, pp. 94–97

    Google Scholar 

  103. Yan R.H., et al., IEEE Elec. Dev. Lett. 13, (5), 256–258(1992)

    Article  Google Scholar 

  104. Taur Y., et al., IEEE IEDM Tech. Digest 127–130 (1993)

    Google Scholar 

  105. Nowak E., IEEE IEDM Tech. Digest 115–118(1993)

    Google Scholar 

  106. Mizuno T., et al., “Performance Fluctuations of 0.1 μm MOSFETs — Limitations of 0.1 μm ULSI,” IEEE 1994 Symposium on VLSI Technology, p. 13–15

    Google Scholar 

  107. Sakurai T., and Newton A.R., IEEE J. Solid-State Cir. 25, 584–594 (1990)

    Article  Google Scholar 

  108. Wong Hon-Sum, and Taur Yuan, IEEE IEDM Tech. Dig. 705 (1993)

    Google Scholar 

  109. Mizuno T., Okamura Jun-ichi, and Toriumi Akira VLSI Symp. 1993, p. 41

    Google Scholar 

  110. Nishinohara K., et al., IEEE Trans. Electron Devices ED-39, 634 (1992)

    Article  Google Scholar 

  111. Keyes R.W., IEEE J. Solid State Circuits 245–247 (1975)

    Google Scholar 

  112. Mizuno T., Okamura J., and Toriumi A., IEEE Trans. Elec. Dev. 41, 2216–2221 (1994)

    Article  Google Scholar 

  113. Mizuno T., Toriumi A., J. Appl. Phys. 77, 3538–3540(1995)

    Article  Google Scholar 

  114. Ratnakumar K.N., Meindl J.D., and Scharfetter D.L., “New IGFET Short-Channel Thres-hold Voltage Model,” IEEE Internal Electron Device Meeting, pp. 204–206, Washington,D.C. 1981

    Google Scholar 

  115. De V.K., Tang X., Meindl J.D., 54th Device Research Conf. Digest 114–115(1996)

    Google Scholar 

  116. Kane E.O., and Blount E.I., in Tunneling Phenomena in Solids, Burstein E., and Lundqvist S., eds., New York: Plenum Press, 1969, pp.79–91

    Chapter  Google Scholar 

  117. Fair R.B., and Wivell H.W., IEEE Trans. Electron Devices ED-23, 512 (1976)

    Article  Google Scholar 

  118. Fulton T.A., and Dolan G.J., Phys. Rev. Lett. 59, 109 (1987)

    Article  Google Scholar 

  119. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, Grabert H., and Devoret M.H., NATO ASI series, Plenum Press, 1991, vol. 294.

    Google Scholar 

  120. Tucker J.R., J. Appl. Phys. 72, 4399–4413 (1992)

    Article  Google Scholar 

  121. Lutwyche M.I., and Wada Y., J. Appl. Phys. 75, 3654–3661 (1994)

    Article  Google Scholar 

  122. van Houten H., Beenakker C.W.J., and van Wees B.J., in Semiconductors and Semime-tals, Reed M.A., volume ed., New York: Academic Press, 1991

    Google Scholar 

  123. Sols F., et al., Journ. Appl. Phys. 66 (8), 3892–3906 (1989)

    Article  Google Scholar 

  124. The New Superconducting Electronics, Weinstock H., and Ralston R.W., eds., Boston: Kluwer Academic Publishers, 1993

    Google Scholar 

  125. Allee D.R., et al., J. Vac. Sci. Technol. B, 6, 328–332 (1988)

    Article  Google Scholar 

  126. Allee D.R., Broers A.N., and Pease R.F.W., “Limits of Nano-Gate Fabrication,” Proc. IEEE. 79, 1991, pp. 1093–1105

    Article  Google Scholar 

  127. Yokoyama M., et al., IEEE Electron Dev. Lett. 15, 202–205 (1994)

    Article  Google Scholar 

  128. Dike R.S.U., Int. Journ. Electronics 76, 403–415 (1994)

    Article  Google Scholar 

  129. Gildenblat G., in VLSI Electronics Micro structure Science, New York: Academic Press, 1989, vol. 18, pp. 191–236

    Google Scholar 

  130. Yano K., and Ferry D.K., Superlatt. Microstruc. 11, 61 (1992)

    Article  Google Scholar 

  131. Yano K., and Ferry D.K., Phys. Rev. B 46, 3865 (1992)

    Article  Google Scholar 

  132. Averin D.V., Korotkov A.N., and Likharev K.K., Phys. Rev. B 44, 6199 (1991)

    Article  Google Scholar 

  133. Averin D.V., and Likharev K.K., Mesoscopic Phenomena in Solids, Altshuler B.L., Lee P.A., and Webb R.A., eds., Elsevier Science 1991, pp. 173–271

    Google Scholar 

  134. van Houten H., Beenakker C.W.J., and Staring A.A.M., in Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, Grabert H., and Devoret M.H., eds., NATO ASI Series B: Physics Vol. 294, New York: Plenum Press, 1992, p. 167

    Chapter  Google Scholar 

  135. Likharev K.K., IEEE Trans. Magnetic, MAG-23, 1142–1145 (1987)

    Article  Google Scholar 

  136. Delsing P., et al., IEEE Trans. Mag. 27, 2, 2581 (1991); and Likharev, K.K., IEEETrans. Magn. 23, 1142 (1987).

    Article  Google Scholar 

  137. Zimmerli G., Kautz R.L., and Martinis J.M., Appl. Phys. Lett. 61 (21), 2616 (1992)

    Article  Google Scholar 

  138. Schönenberger C., and van Houten H., 1992 International Conference on Solid State Devices and Materials 1992, p. 726

    Google Scholar 

  139. Korotkov A.N., Chen R.H., and Likharev K.K., J. Appl. Phys. 78, 2520–2530 (1995)

    Article  Google Scholar 

  140. Liu H.I., et al., Appl. Phys. Lett. 64, 2010 (1994)

    Article  Google Scholar 

  141. Averin D.V., and Likharev K.K., in Single Charge Tunneling, Brabert H., and Devoret M.H., eds., New York: Plenum Press, 1992, ch. 9, pp. 311–332.

    Chapter  Google Scholar 

  142. Brodie L., Phys. Rev. B 51, 660 (1995)

    Article  Google Scholar 

  143. Geerligs L.J., et al., Phys. Rev. Lett. 64, 1691 (1990)

    Article  Google Scholar 

  144. Washburn S., and Webb R.A., Advance Phys. 35, 375–422 (1986)

    Article  Google Scholar 

  145. van Wees B.J., et al., Phys. Rev. Lett. 60, 848 (1988)

    Article  Google Scholar 

  146. Wharam D.A., et al., J. Phys. C. 21, L209 (1988)

    Article  Google Scholar 

  147. Landauer R., Localization, Interaction, and Transport Phenomena, Bergmann G., and Bruynseraede Y., eds., New York: Springer-Verlag, 1985, p.38–50

    Chapter  Google Scholar 

  148. Economou E.N., and Soukoulis C.M., Phys. Rev. Lett. 46, 618 (1981)

    Article  Google Scholar 

  149. Glazman L.I., et al., JETP Lett. 48, 238 (1988); [Pis’ma Zh. Teor. Fiz. 48, 218-220 (1988)]

    Google Scholar 

  150. Datta S., Superlattices and Microstructures 6, 83–93 (1989)

    Article  Google Scholar 

  151. Timp G., et al., Proc. Int. Symposium on Nanostructure Physics and Fabrication, Reed M.A., and Kirk W.P., eds., Academic Press, 1989, p. 331

    Google Scholar 

  152. Davies John H., and Timp Gregory, Heterostructures and Quantum Devices, Academic Press, 1994, pp. 385–418

    Google Scholar 

  153. Nixon J.A., Davies J.H., and Baranger H.U., Phys. Rev. B 43, 12638 (1991)

    Article  Google Scholar 

  154. Nixon J.A., and Davies J.H., Phys. Rev. B 41, 7929 (1990)

    Article  Google Scholar 

  155. J. Davies, private communication

    Google Scholar 

  156. Koester S.J., et al., Phys. Rev. B 49, 8514 (1994)

    Article  Google Scholar 

  157. Likharev K.K., and Semenov V.K., IEEE Trans. Appl. Supercond. 1, 3–28 (1991)

    Article  Google Scholar 

  158. Kwon O.K., et al., IEEE Electron Dev. Lett. EDL-8, 582–585 (1987)

    Article  Google Scholar 

  159. Matisoo, IBM J.Res. Develop. 24, 113–129 (1980)

    Article  Google Scholar 

  160. Anacker W., IBM J. Res. Develop. 24, 107–112 (1980)

    Article  Google Scholar 

  161. Bunyk P.I., et al., Appl Phys. Lett. 66, 646–648 (1995)

    Article  Google Scholar 

  162. Hamilton C.A., and Gilbert K.C., IEEE Trans. Appl. Superconduct. 1, 157–162 (1991)

    Article  Google Scholar 

  163. Garnier F., et al., Science 265, 1684–1686 (1994)

    Article  Google Scholar 

  164. Garnier R, Recherche, 26, 76–77 (1995)

    Google Scholar 

  165. SEMATECH, Technology Transfer #91080669E-GEN (1993)

    Google Scholar 

  166. B.D. Ackland, private communication

    Google Scholar 

  167. D.A. Antoniadas, and J.E. Chung, IEEE IEDM Tech. Dig. 21 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Timp, G., Howard, R.E., Mankiewich, P.M. (1999). Nano-electronics for Advanced Computation and Communication. In: Timp, G. (eds) Nanotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0531-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0531-9_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6805-5

  • Online ISBN: 978-1-4612-0531-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics