Skip to main content

Semiconducting and Superconducting Physics and Devices in theInAs/AlSb Materials System

  • Chapter
Nanotechnology

Abstract

Advances in the understanding of mesoscopic transport have benefited from the ability to fabricate and characterize structures at the requisite dimensions (≤ 100 nm), having appropriate materials characteristics. For example, the high mobilities of modulation-doped heterostructures, with their resulting long mean free paths, have enabled the observation of quantized conductance, and Aharanov-Bohm oscillations. In addition to the high mobilities, the field-controllable modulation of electron densities has made such semiconductor materials key factors in the observation of mesoscopic phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Takayanagi H., Hansen J.B., and Nitta J., Physica B 203, 291–297 (1994)

    Article  Google Scholar 

  2. Hergenrother J.M., et al., Physica B 203, 327–339 (1994)

    Article  Google Scholar 

  3. Nakagawa A., Kroemer H., and English J.H., Appl. Phys. Lett. 54, 1893–1895 (1989)

    Article  Google Scholar 

  4. Waldrop J.R., et al., J. Vac. Sci. Technol. B 10, 1773–1776 (1992)

    Article  Google Scholar 

  5. Sakaki H., et al., Appl. Phys. Lett. 31, 211–213 (1977)

    Article  Google Scholar 

  6. Chang L.L., and Esaki L., Surf. Sci. 98, 70–89 (1980)

    Article  Google Scholar 

  7. Gualtieri G.J., et al. Appl. Phys. Lett. 49, 1037–1039 (1986)

    Article  Google Scholar 

  8. Cebulla U., et al., Phys. Rev. B 37, 6278–6284 (1988)

    Article  Google Scholar 

  9. Bolognesi C.R., et al., IEEE Elect. Dev. Lett. 14, 13–15 (1993)

    Article  Google Scholar 

  10. Beenakker C.W.J., and vanHouten H., Solid State Physics 44, 1 (1991)

    Google Scholar 

  11. Thornton T.J., et al., Phys. Rev. Lett. 56, 1198–1201 (1986)

    Article  Google Scholar 

  12. Timp G., in Nanostructured Systems, Semiconductors and Semimettals 35, Reed M.A., ed., New York: Academic Press, 1990, pp. 113–190

    Google Scholar 

  13. Wharam D.A., et al., J. Phys. C 21, L209–214 (1988)

    Article  Google Scholar 

  14. vanWees B.J., et al., Phys. Rev. Lett. 60, 848–850 (1988)

    Article  Google Scholar 

  15. Landauer R., “Transport as a consequence of incident carrier flux,” in International Conference on Localization, Interaction and Transport Phenomena, Braunschweig, Germany, 1984, Kramer B., Bergmann G., and Bruynseraede Y., eds., SpringerVerlag, pp. 38–50

    Google Scholar 

  16. Büttiker M., Phys. Rev. Lett. 57, 1761–1764 (1986)

    Article  Google Scholar 

  17. Nixon J.A., Davies J.H., and Baranger H.U., Phys. Rev. B 43, 12638–12641 (1991)

    Article  Google Scholar 

  18. Snider G.L., et al., Appl. Phys. Lett. 59, 2727–2729 (1991)

    Article  Google Scholar 

  19. Nguyen C., “Current Transport in InAs-AlSb Quantum Well Structures with Super conducting Niobium Electrodes”, Ph.D. Dissertation, UCSB, 1993 (unpublished)

    Google Scholar 

  20. Rooks M.J., et al., J. Vac. Sci. Technol. B 9, 2856–2860 (1991)

    Article  Google Scholar 

  21. Koester S.J., Brar B., Bolognesi C.R., Caine E.J., Patlach A., Hu E.L., Kroemer H., and Rooks M.J., Phys. Rev. B., submitted 1995

    Google Scholar 

  22. Wharam D.A., et al., Phys. Rev. B 39, 6283–6286 (1989)

    Article  Google Scholar 

  23. Yang M.J., et al., Phys. Rev. B 47, 6807–6810 (1993)

    Article  Google Scholar 

  24. Brataas A., and Chao K.A., Mod. Phys. Lett. B 7, 1021–1027 (1993)

    Article  Google Scholar 

  25. Laughton M.J., et al., Phys. Rev. B 44, 1150–1153 (1991)

    Article  Google Scholar 

  26. Glazman L.I., and Jonson M., Phys. Rev. B 44, 3810–3820 (1991)

    Article  Google Scholar 

  27. Timp G., et al., “When isn’t the conductance of an electron waveguide quantized?”, International Symposium on Nanostructure Physics and Fabrication, College Station, TX, 1989, Reed M.A., and Kirk W.P., eds., Academic Press, pp. 3 31–345

    Google Scholar 

  28. Ismail K., Washburn S., and Lee K.Y., Appl. Phys. Lett. 59, 1998–2000 (1991)

    Article  Google Scholar 

  29. Zagqskin A.M., et al., J. Phys. Condensed Matter 7, 6253–6270 (1995)

    Article  Google Scholar 

  30. Snider G.L., “Design, fabrication, and analysis of split-gate ballistic constrictions,” Ph.D. Dissertation, UCSB, 1991 (unpublished)

    Google Scholar 

  31. Tarucha S., et al., “Random potential scattering and mutual Coulomb interaction in long quantum wires,” 2nd International Workshop on Quantum Functional Devices, Matsue, Japan, 1995, FED-143, pp. 8–11

    Google Scholar 

  32. Beenakker C.W.J., and van Houten H., “The superconducting quantum point contact,“ International Symposium on Nanostructures and Mesoscopic Systems, Santa Fe, NM, 1991, Kirk W.P, and Reed M.A., eds., Academic Press, pp. 481–497

    Google Scholar 

  33. Furusaki A., Takayanagi H., and Tsukuda M., Phys. Rev. Lett. 67, 132–135 (1991)

    Article  Google Scholar 

  34. Likharev K.K., Revs. Mod. Phys. 51, 101–158 (1979)

    Article  Google Scholar 

  35. Kroemer H., et al., Physica B 203, 298–306 (1994); (Proc. NATO Advanced Research Workshop on Mesoscopic Superconductivity, Karlsruhe, 1994)

    Article  Google Scholar 

  36. Feynman R.P., Leighton R.B., and Sands M., The Feynman Lectures on Physics; Vol. 3: Quantum Mechanics, Reading: Addison-Wesley, 1965 See Section 21-9

    MATH  Google Scholar 

  37. Kittel C., Introduction to Solid State Physics, New York: Wiley, 1986

    MATH  Google Scholar 

  38. Tinkham M., Introduction to Superconductivity, New York: McGraw-Hill, 1975

    Google Scholar 

  39. de Gennes P.G., Superconductivity of Metals and alloys, New York: Benjamin, 1966

    MATH  Google Scholar 

  40. Silver A.H., et al., “Superconductor-Semiconductor Device Research,” Futuretrends in Superconductive Electronics, Charlottesville, VA, 1978, Deaver J.B.S., Falco C.M., Harris H.H., and Wolf S.A., eds., Am. Inst. Phys. Conf. Ser., vol. 44, Am. Inst. Physics, pp. 364–379

    Google Scholar 

  41. Clark T.D., Prance R.J., and Grassie A.D.C., J. Appl Phys. 51, 2736–2743 (1980)

    Article  Google Scholar 

  42. Nishino T., et al., IEEE Elect. Dev. Lett. EDL-6, 297–299 (1985)

    Article  Google Scholar 

  43. Nishino T., et al. IEEE Elect. Dev. Lett. 10, 61–63 (1989)

    Article  Google Scholar 

  44. Ivanov Z., Claeson T., and Andersson T., IEEE Trans. Mag. MAG-23, 711–713 (1987); (Proc. Applied Superconductivity Conference, 1986)

    Article  Google Scholar 

  45. Ivanov Z., Claeson T., and Andersson T., Jpn. J. Appl. Phys. 26 Supplement 3, DP31–32 (1987); Proc. 18th Internal Conf. on Low Temperature Physics, Kyoto, 1987)

    Article  Google Scholar 

  46. Takayanagi H., and Kawakami T., “Planar INAs-Coupled Three-Terminal Superconducting Devices,” Internal Electron Devices Meeting, Washington, D.C., 1985, IEDM Digest, IEEE, pp. 98–101

    Google Scholar 

  47. Takayanagi H., et al., Jpn. J. Appl. Phys. 34, 1391–1395 (1995)

    Article  Google Scholar 

  48. Akazaki T., Nitta J., and Takayanagi H., IEEE Trans. Applied Supercond. 5, 2887–2891 (1995)

    Article  Google Scholar 

  49. Akazaki T., Takayanagi H., Nitta J., and Enoki T., Appl Phys. Lett., submitted 1995

    Google Scholar 

  50. Bolognesi C.R., Kroemer H., and English J.H., J. Vac. Sci. Technol. B 10, 877–879 (199

    Article  Google Scholar 

  51. Bolognesi C.R., Kroemer H., and English J.H., Appl. Phys. Lett. 61, 213–215 (1992)

    Article  Google Scholar 

  52. Nguyen C, et al., Appl. Phys. Lett. 57, 87–89 (1990)

    Article  Google Scholar 

  53. Andreev A.F., Sov. Phys. JETP 19, 1228–1231 (1964)

    Google Scholar 

  54. van Houten H., and Beenakker C.W.J., Physica B 175, 187–197 (1991)

    Article  Google Scholar 

  55. van Wees B.J., Lenssen K.-M.H., and Harmans C.J.P.M., Phys. Rev. B 44, 470–473 (1991)

    Article  Google Scholar 

  56. Schüssler U., and Kümmel R., Phys. Rev. B 47, 2754–2759 (1993)

    Article  Google Scholar 

  57. Bardeen J., and Johnson J.L., Phys. Rev. B 5, 72–78 (1972)

    Article  Google Scholar 

  58. Nguyen C, Kroemer H., and Hu E.L., Appl. Phys. Lett. 65, 103–105 (1994)

    Article  Google Scholar 

  59. Blonder G.E., Tinkham M., and Klapwijk T.M., Phys. Rev. B 25, 4515–4532 (1982)

    Article  Google Scholar 

  60. Klapwijk T.M., Blonder G.E., and Tinkham M., Physica B&C 109/110, 1657–1664 (1982)

    Article  Google Scholar 

  61. Kümmel R., and Senftinger W., Z.Physik B 59, 275–281 (1985)

    Article  Google Scholar 

  62. Kümmel R., Gunsenheimer U., and Nicolsky R., Phys. Rev. B 42, 3992–4009 (1990)

    Article  Google Scholar 

  63. Gunsenheimer U., Schüssler U., and Kümmel R., Phys. Rev. B 49, 6111–6125 (1994)

    Article  Google Scholar 

  64. Gunsenheimer U., and Zaikin A.D., Phys. Rev. B 50, 6317–6331 (1994)

    Article  Google Scholar 

  65. Gunsenheimer U.G., “Josephson Ströme und dissipativer Ladungs transport in mesoskopischen Supraleiter-Normalleiter-Supraleiter-Kontakten,ö Ph.D. Dissertation, Wiirzburg, 1994

    Google Scholar 

  66. Kleinsasser A.W., et al., Appl. Phys. Lett. 57, 1811–1813 (1990)

    Article  Google Scholar 

  67. van Wees B.J., et al., Phys. Rev. Lett. 69, 510–513 (1992)

    Article  Google Scholar 

  68. Nguyen C, Kroemer H., and Hu E.L., Phys. Rev. Lett. 69, 2847–2850 (1992)

    Article  Google Scholar 

  69. Maemoto T., et al., Jpn. J. Appl. Phys. 33, 7201–7209 (1994)

    Article  Google Scholar 

  70. Nguyen C, et al., J. Electron. Mat. 22, 255–258, (1993)

    Article  Google Scholar 

  71. Chaudhuri S., Crocker B., Bagwell P., Thomas M., and Kroemer H., “A study of InAs-AlSb-coupled weak links at temperatures below 1.4K,” (unpublished)

    Google Scholar 

  72. Thomas M., Blank R., Wong K., Kroemer H., and Hu E.L., “Temperature Dependence of the Precursor to Superconductivity in inAs-Coupled Superconducting Weak Link Arrays.” (unpublished)

    Google Scholar 

  73. Harris J., and Yuh E., “Temperature Dependence of the Zero-Bias Resistance of a Series Array of inAs-Coupled Superconducting Weak Links,” (personal communication)

    Google Scholar 

  74. Thomas M., Wong K., and Kroemer H., “Flux-Periodic Resistance Oscillations in a Series Array of Superconducting Weak Links of InAs-AlSb Quantum Wells with Nb Electrodes,” (unpublished)

    Google Scholar 

  75. Chang C.-A., et al., J. Vac. Sci. Technol. B 2, 214–216 (1984)

    Article  Google Scholar 

  76. Tuttle G., Kroemer H., and English J.H., J. Appl. Phys. 65, 5239–5342 (1989)

    Article  Google Scholar 

  77. Tuttle G., Kroemer H., and English J., “Electron Transport in InAs/AlSb Quantum Wells: Interface Sequencing Effects,” III-V Heterostructures for Electronic/Photonic Devices, San Diego, 1989, Tu C., Mattera V.D., and Gossard A.C., eds., MRS Symposia Proceedings, vol 145, Materials Research Society, pp. 393–398

    Google Scholar 

  78. Tuttle G., Kroemer H., and English J.H., J. Appl. Phys. 67, 3032–3037 (1990)

    Article  Google Scholar 

  79. Subbanna S., et al., J. Vac. Sci. Technol B 7, 289–295 (1989)

    Article  Google Scholar 

  80. McLean T.D., et al., J. Vac. Sci. Technol. B 4, 601 (1986)

    Article  Google Scholar 

  81. Subbanna S., Tuttle G., and Kroemer H., J. Electron. Mat. 17, 297–303 (1988)

    Article  Google Scholar 

  82. Nguyen C, et al., Appl. Phys. Lett. 60, 1854–1856 (1992)

    Article  Google Scholar 

  83. Nguyen C., et al., J. Vac. Sci. Technol. B 11, 1706–1709 (1993)

    Article  Google Scholar 

  84. Nguyen C., et al., Appl. Phys. Lett. 63, 2251–2253 (1993)

    Article  Google Scholar 

  85. Kroemer EL, Nguyen C, and Brar B., J. Vac. Sci. Technol. B 10, 1769–177:(1992)

    Article  Google Scholar 

  86. Shen J., et al., J. Appl. Phys. 77, 1576–1581 (1995)

    Article  Google Scholar 

  87. Thomas M., and Blank R., “Improved Electron Mobilities in Heavily ModulationDoped InAs-AlSb Quantum Wells,” personal communication

    Google Scholar 

  88. Kroemer H., Liu T.-Y., and Petroff P.M., J.Cryst. Growth 95, 96–102 (1989)

    Article  Google Scholar 

  89. Mead C.A., and Spitzer W.G., Phys. Rev. 134, 713–716 (1964)

    Article  Google Scholar 

  90. Walpole J.N., and Nill K.W., J. Appl. Phys. 42, 5609–5617 (1971)

    Article  Google Scholar 

  91. Brillson L.J., et al., J. Vac. Sci. Technol. B 4, 919–923 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kroemer, H., Hu, E. (1999). Semiconducting and Superconducting Physics and Devices in theInAs/AlSb Materials System. In: Timp, G. (eds) Nanotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0531-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0531-9_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6805-5

  • Online ISBN: 978-1-4612-0531-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics