Nanotechnology pp 537-628 | Cite as

Chaos in Ballistic Nanostructures

  • Harold U. Baranger
  • R. M. Westervelt

Abstract

What is the effect of quantum interference on transport in ballistic structures? What are the quantum properties of classically chaotic scattering systems? These e the two questions addressed in this review.

Keywords

Microwave Manifold Coherence GaAs Resis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    For reviews of mesoscopic physics see: Beenakker C.W.J., and van Houten H., in Solid State Physics, Vol.44, Ehrenreich H., and Turnbull D., eds. New York: Academic Press, 1991, pp.1–228; and Altshuler B.L., Lee P.A., and Webb R.A., Mesoscopic Phenomena in Solids Amsterdam: North-Holland, 1991Google Scholar
  2. [2]
    Sheng P., Scattering and Localization of Classical Waves in Random Media, Singapore: World Scientific, 1990Google Scholar
  3. [3]
    For reviews of chaos see: Gutzwiller M.C., Chaos in Classical and Quantum Mechanics, New York: Springer-Verlag, 1990; Giannoni M.-J., Voros, A., and Zinn-Justin, J., Chaos and Quantum Physics, London: Elsevier, 1990MATHCrossRefGoogle Scholar
  4. [4]
    For a review of transient chaos see: Tél T., in Direction in Chaos, Vol. 3, Bai Lin Hao, ed., Singapore: World Scientific, 1990, pp. 149–211Google Scholar
  5. [5]
    For a review of classical and quantum chaotic scattering see: Smilansky U., in Chaos and Quantum Physics, Giannoni M.-J., Voros A., and Zinn-Justin J., eds., New York: North-Holland, 1991, pp.371–441Google Scholar
  6. [6]
    Concerning phase-breaking, see, for example: Altshuler B.L., Aronov A.G., and Khmelnitskii D.E., Solid State Commun. 39, 619 (1981); J. Phys. C 15, 7367 (1982); Fukuyama H., and Abrahams E., Phys. Rev. B 27, 5976 (1983); Fukuyama, H., J. Phys. Soc. Jpn. 53, 3299 (1984); Büttiker, M., Phys. Rev. B 33, 3020 (1986); Datta, S., Phys. Rev. B 40,5830(1989); Feng, S., Phys. Lett. A 143, 400 (1990); Stern, A., Aharonov, Y., and Imry, Y., Phys. Rev. 41, 3436 (1990); Kirczenow, G., Solid State Commun. 74, 1051 (1990); D’Amato, J.L., and Pastawski, H.M., Phys. Rev. 41, 7441 (1990); Hershfield, S., Phys. Rev. B 43, 11586(1991)CrossRefGoogle Scholar
  7. [7]
    Sivan U., Imry Y., and Aronov A.G., Europhys. Lett. 28, 115 (1994)CrossRefGoogle Scholar
  8. [8]
    Abrikosov A.A., Fundamentals of the Theory of Metals, Amsterdam: North-Holland, 1988Google Scholar
  9. [9]
    Landauer R., IBM J. Res. Dev. 1, 233 (1957); Z.Phys. B 68, 217 (1987)MathSciNetCrossRefGoogle Scholar
  10. [10]
    Büttiker M, Phys. Rev. Lett. 57, 1761 (1986)CrossRefGoogle Scholar
  11. [11]
    Imry Y., in Perspectives on Condensed Matter Physics, Grinstein G., and Mazenko E., eds., Singapore: World Publishing, 1986Google Scholar
  12. [12]
    Büttiker M., Prêtre A., and Thomas H., Phys. Rev. Lett. 70, 4114 (1993)CrossRefGoogle Scholar
  13. [13]
    McQuarrie D.A., Statistical Mechanics, New York: Harper and Row, 1976, pp.507,540Google Scholar
  14. [14]
    Madelung O., Introduction to Solid State Theory, New York: Springer-Verlag, 1978, pp.365–370CrossRefGoogle Scholar
  15. [15]
    For derivations of transmission formulas for the conductance from the Kubo formulasee: Economou E.N., and Soukoulis C.M., Phys. Rev. Lett. 46, 618 (1981); Fisher, D.S., and Lee, P.A., Phys. Rev. B 23, 6851 (1981); Engquist, H.L., and Anderson, P.W., Phys. Rev. B 24, 1151 (1981); Langreth, D.C., and Abrahams, E., Phys. Rev. B 24, 2978 (1981); Stone, A.D., and Szafer, A., IBM J. Res. Develop. 32, 384 (1988); Baranger, H.U., and Stone, A.D., Phys. Rev. B 40, 8169 (1989); Kucera, J., and Streda, P., J. Phys. C 21, 4357 (1988); Kucera, J., Czechoslovak J. Phys. 41, 749 (1991); Shepard, K., Phys. Rev. B 43, 11623 (1991); Azbel, M. Ya., Phys. Rev. B 46, 15004 (1992); Fenton, E.W., Phys. Rev. B 46, 3754 (1992); 47, 10135 (1993); Nöckel, J.U., Stone, A.D., and Baranger, H.U., Phys. Rev. B 48, 17569 (1993)CrossRefGoogle Scholar
  16. [16]
    Blümel R., and Smilansky U., Phys. Rev. Lett. 60, 477 (1988); 64, 241 (1990); Physica D 36, 111 (1989)CrossRefGoogle Scholar
  17. [17]
    Jalabert R.A., Baranger H.U., and Stone A.D., Phys. Rev. Lett. 65, 2442 (1990)CrossRefGoogle Scholar
  18. [18]
    Baranger H.U., Jalabert R.A., and Stone A.D., Phys. Rev. Lett. 70, 3876 (1993)CrossRefGoogle Scholar
  19. [19]
    Baranger H.U., Jalabert R.A., and Stone A.D., Chaos 3, 665 (1993)CrossRefGoogle Scholar
  20. [20]
    Jensen R.V., Chaos 1, 101 (1991)MathSciNetCrossRefGoogle Scholar
  21. [21]
    Lai Y.-C, et al., Phys. Rev. Lett. 68, 3491 (1992)MathSciNetCrossRefGoogle Scholar
  22. [22]
    Lin W.A., Delos J.B., and Jensen R.V., Chaos 3, 655 (1993)CrossRefGoogle Scholar
  23. [23]
    The distribution in the non-chaotic case is discussed in Meiss J.D., and Ott E., Phys. Rev. Lett. 55, 2741 (1985); Bauer, W., and Bertsch, G.F., Phys. Rev. Lett. 65, 2213 (1990); Legrand, O., and Sornette, D., Physica D 44, 229 (1990); Reference [21] and references thereinCrossRefGoogle Scholar
  24. [24]
    Timp G., et al., Phys. Rev. Lett. 60, 2081 (1988)CrossRefGoogle Scholar
  25. [25]
    Takagaki Y., et al., Solid State Commun. 68, 1051 (1988); Takagaki, Y., et al., Solid State Commun. 71, 809 (1989); Takagaki, Y., et al., Solid State Commun. 75, 873 (1990)CrossRefGoogle Scholar
  26. [26]
    Baranger H.U., Phys. Rev. B 42, 11479 (1990)CrossRefGoogle Scholar
  27. [27]
    Beenakker C.W.J., and van Houten H., Phys. Rev. B 39, 10445 (1989)CrossRefGoogle Scholar
  28. [28]
    Glazman L.I., et al., Pis’ma Ah. Teor. Fiz. 48, 218 (1988) [JETP Lett. 48, 238 (1988)]Google Scholar
  29. [29]
    Baranger H.U., and Stone A.D., Phys. Rev. Lett. 63, 414 (1989)CrossRefGoogle Scholar
  30. [30]
    Molenkamp L.W., et al., Phys. Rev. B 41, 1274 (1990)CrossRefGoogle Scholar
  31. [31]
    Shepard K.L., Roukes M.L., and van der Gaag B.P., Phys. Rev. Lett. 68, 2660 (1992)CrossRefGoogle Scholar
  32. [32]
    Roukes M.L., et al., Phys. Rev. Lett. 59, 3011 (1987)CrossRefGoogle Scholar
  33. [33]
    Ford C.J.B., et al., Phys. Rev. B 38, 8518 (1988)CrossRefGoogle Scholar
  34. [34]
    Ford C.J.B., et al., Phys. Rev. Lett. 62, 2724 (1989)CrossRefGoogle Scholar
  35. [35]
    Chang A.M., Chang T.Y., and Baranger H.U., Phys. Rev. Lett. 63, 1860 (1989)Google Scholar
  36. [36]
    Roukes M.L., Scherer A., and Van der Gaag B.P., Phys. Rev. Lett. 64, 1154 (1990); Roukes, M.L., et al., in Science and Engineering of 1-and 0-Dimensional Semiconductors, Beaumont, S.P., and Sotomayor-Torres, C.M., eds., New York: Plenum, 1990CrossRefGoogle Scholar
  37. [37]
    Akera H., and Ando T., Phys. Rev. B 41, 11967 (1990)CrossRefGoogle Scholar
  38. [38]
    Beenakker C.W.J., and van Houten H., Phys. Rev. Lett. 63, 1857 (1989); in Electronic Properties of Low-Dimensional Semiconductor Structures, Chamberlain, J.M., Eaves, L., and Portal, J.C., eds., New York: Plenum, 1990CrossRefGoogle Scholar
  39. [39]
    Baranger H.U., et al., Phys. Rev. B 44, 10637 (1991)CrossRefGoogle Scholar
  40. [40]
    Baranger H.U., and Stone A.D., Surf. Sci. 229, 212 (1990)CrossRefGoogle Scholar
  41. [41]
    Roukes M.L., and Alerhand O.L., Phys. Rev. Lett. 65, 1651 (1990)CrossRefGoogle Scholar
  42. [42]
    Sivan U., et al., Phys. Rev. B 41, 7937 (1990); Spector, J., et al., Appl. Phys. Lett. 56, 967 (1990); 56, 1290 (1990); 56, 2433 (1990)CrossRefGoogle Scholar
  43. [43]
    Fleischmann R., Geisel T., and Ketzmerick R., Phys. Rev. Lett. 68, 1367 (1992); Europhys.Lett. 25, 219 (1994)CrossRefGoogle Scholar
  44. [44]
    Timp G., in Mesoscopic Phenomena in Solids, Altshuler B.L., Lee P.A., and Webb R.A., eds., Amsterdam: North Holland, 1991; Kouwenhoven, L.P., private communication (1989); Washburn, S., private communication (1989)Google Scholar
  45. [45]
    Marcus CM., et al., Phys. Rev. Lett. 69, 506 (1992)CrossRefGoogle Scholar
  46. [46]
    Marcus CM., et al., Phys. Rev. B 48, 2460 (1993)CrossRefGoogle Scholar
  47. [47]
    Keller M.W., et al. Surf. Sci. 305, 501 (1994); Keller, M.W., thesis (Yale University 1995)CrossRefGoogle Scholar
  48. [48]
    Berry M.J., et al., Phys. Rev. B 50, 8857 (1994); Berry, M.J., et al., Phys. Rev. B 50, 17721 (1994); Berry, M.J., et al., Surf. Sci. 305, 480 (1994)CrossRefGoogle Scholar
  49. [49]
    Chang A.M., et al., Phys. Rev. Lett. 73, 2111 (1994)CrossRefGoogle Scholar
  50. [50]
    Marcus CM., et al., Chaos 3, 643 (1993) and Surf. Sci. 305, 480 (1994)CrossRefGoogle Scholar
  51. [51]
    Chan I.H., et al., Phys. Rev. Lett. 74, 3876 (1995)CrossRefGoogle Scholar
  52. [52]
    Clarke R.M., et al., preprint (August 1994)Google Scholar
  53. [53]
    Bird J.P., et al., Phys. Rev. B 50, 18678 (1994); Phys. Rev. B (in press)MathSciNetCrossRefGoogle Scholar
  54. [54]
    van Wees B.J., et al., Phys. Rev. Lett. 60, 848 (1988)CrossRefGoogle Scholar
  55. [55]
    Wharam D.A., et al., J. Phys. C 21, L209 (1988)CrossRefGoogle Scholar
  56. [56]
    Timp G., et al., in Nanostructure Physics and Fabrication, Reed M.A., and Kirk W.P., eds., New York: Academic Press, 1989, p.331Google Scholar
  57. [57]
    van Wees B.J., et al., Phys. Rev. B 43, 12431 (1991)CrossRefGoogle Scholar
  58. [58]
    Snider G.L., et al., Appl. Phys. Lett. 59, 2727 (1991)CrossRefGoogle Scholar
  59. [59]
    Szafer A., and Stone A.D., Phys. Rev. Lett. 62, 300 (1989)CrossRefGoogle Scholar
  60. [60]
    Kirczenow G., Solid State Commun. 71, 469 (1989); Phys. Rev. Lett. 62, 2993 (1989)CrossRefGoogle Scholar
  61. [61]
    Nixon J.A., and Davies J.H., Phys. Rev. B 41, 7929 (1990)CrossRefGoogle Scholar
  62. [62]
    Nixon J.A., Davies J.H., and Baranger H.U., Phys. Rev. B 43, 12638 (1991); Laughton, M.J., et al., Phys. Rev. B 44, 1150 (1991)CrossRefGoogle Scholar
  63. [63]
    Ravenhall D.G., Wyld H.W., and Schult R.L., Phys. Rev. Lett. 62, 1780 (1989)CrossRefGoogle Scholar
  64. [64]
    Avishai Y., and Band Y.B., Phys. Rev. Lett. 62, 2527 (1989)CrossRefGoogle Scholar
  65. [65]
    Behringer R., et al., Phys. Rev. Lett. 66, 930 (1991)CrossRefGoogle Scholar
  66. [66]
    Kakuta T., et al., Phys. Rev. B 43, 14321 (1991)CrossRefGoogle Scholar
  67. [67]
    Lee P.A., and Fisher D.S., Phys. Rev. Lett. 47, 882 (1981); Thouless, D.J., and Kirkpatrick, S., J. Phys. C 14, 235 (1981); MacKinnon, A., Z. Phys. B 59, 385 (1985)MathSciNetCrossRefGoogle Scholar
  68. [68]
    The prefactor in the semiclassical expression for the Green’s function is Ds=(v cosθ́ /m)−1 (∂θ/∂ý)y where θ and θ’ are the incoming and outgoing angles.Google Scholar
  69. [69]
    Tomsovic S., and Heller E.J., Phys. Rev. Lett. 67, 664 (1991); Phys. Rev. E 47, 282 (1993); and references thereinMathSciNetCrossRefGoogle Scholar
  70. [70]
    Lin W.A., and Jensen R.V., preprint (December 1994)Google Scholar
  71. [71]
    For reviews of weak-localization in disordered systems see: Bergmann G., Phys. Rev. 107, 1 (1984); Lee, P.A., and Ramakrishnan, T.V., Rev. Mod. Phys. 57, 287 (1985)Google Scholar
  72. [72]
    The argument to obtain exact semiclassical results can be made in two ways in addition to that given in the text. First, from the the semiclassical approximation to the real space form of the conductance (see Baranger and Stone in ref. [15], one can see that the continuum mode approximation is good up to order 1 IN. This approach provides an alternative way to discuss the limiting procedures leading to the classical results. Second, one can follow the standard semiclassical procedure of evaluating the sum with the Poisson summation formula and then doing the integral by stationary phase. When applied to the sums over modes, this procedure yields the same result as in the text.Google Scholar
  73. [73]
    Mello P.A., and Stone A.D., Phys. Rev. B 44, 3559 (1991)CrossRefGoogle Scholar
  74. [74]
    Lewenkopf C.H., and Weidenmüller H.A., Annals of Phys. 212, 53 (1991)CrossRefGoogle Scholar
  75. [75]
    Doron E., Smilansky U., and Frenkel A., Physica D 50, 367 (1991); Phys. Rev. Lett. 65, 3072 (1990)CrossRefGoogle Scholar
  76. [76]
    BlöCmel R., and Smilansky U., Phys. Rev. Lett. 69, 217 (1992)CrossRefGoogle Scholar
  77. [77]
    The non-chaotic case is actually considerably more subtle than the glib treatment just given. In particular, one can no longer rely on the uniformity assumption because the distributions may have a significant dependence on the incident angle. So, the whole analytic argument given above becomes dubious, and Eq. (1.20) must be evaluated by direct simulation, i.e. by injecting classical particles with the appropriate angular distribution and performing the sum over exiting paths with the appropriate phase. The resulting variation of <cos(2Bθ/ϕ0)é with B is roughly linear for both the polygonal[19] and circular[78] shapes. In the case of the circle, this linear behavior is what one expects from naively using the area distribution in Eq. (1.21)[78]; for polygonal billiards, it is probably associated with the extreme flux cancellation effects which occur in such structures [19,79,80].Google Scholar
  78. [78]
    Baranger H.U., (unpublished)Google Scholar
  79. [79]
    DeGennes P.-G., Superconductivity of Metals and Alloys, New York: Addison Wesley, 1966 and 1989, pp.255–259Google Scholar
  80. [80]
    Beenakker C.W.J., and van Houten H., Phys. Rev. B 37, 6544 (1988)CrossRefGoogle Scholar
  81. [81]
    Gutzwiller M.C., Physica D 7, 341 (1983)MathSciNetCrossRefGoogle Scholar
  82. [82]
    Gaspard P., and Rice S.A., J. Chem. Phys. 90, 2225 (1989); 90, 2242 (1989); 90, 2255 (1989)MathSciNetCrossRefGoogle Scholar
  83. [83]
    Oakeshott R.B.S., and MacKinnon A., Superlat. and Microstruc. 11, 145 (1992)CrossRefGoogle Scholar
  84. [84]
    Ullmo D., private communication (1995)Google Scholar
  85. [85]
    Wilkinson M., J. Phys. A 20, 2415 (1987)MathSciNetCrossRefGoogle Scholar
  86. [86]
    Richter K., Europhys. Lett. 29, 7 (1995)CrossRefGoogle Scholar
  87. [87]
    Hackenbroich G., and von Oppen F., Europhys. Lett. 29, 151 (1995)CrossRefGoogle Scholar
  88. [88]
    Argaman N., preprint (1995)Google Scholar
  89. [89]
    Heller E.J., private communication (1994)Google Scholar
  90. [90]
    Lee P.A., and Stone A.D., Phys. Rev. Lett. 55, 1622 (1985)CrossRefGoogle Scholar
  91. [91]
    Altshuler B.L., Pis’ma Zh. Eksp. Teor. Fiz. 41, 530 (1985) [JETP Lett. 41, 648 (1985)]Google Scholar
  92. [92]
    For reviews of random matrix theory see Mehta M.L., Random Matrices, New York: Academic, 1991; Porter, C.E., Statistical Theories of Spectral Fluctuations, New York: Academic, 1965Google Scholar
  93. [93]
    Baranger H.U., and Mello P.A., Phys. Rev. Lett. 73, 142 (1994)CrossRefGoogle Scholar
  94. [94]
    Baranger H.U., and Mello P.A., Phys. Rev. B 51, 4703 (1995)CrossRefGoogle Scholar
  95. [95]
    Baranger H.U., and Mello P.A., preprint (cond-mat/9502078)Google Scholar
  96. [96]
    Jalabert R.A., Pichard J.-L., and Beenakker C.W.J., Europhys. Lett. 27, 255 (1994)CrossRefGoogle Scholar
  97. [97]
    Jalabert R.A., and Pichard J.-L., J. Phys. I France 5, 287 (1995)CrossRefGoogle Scholar
  98. [98]
    Brouwer P.W., and Beenakker C.W.J., Phys. Rev. B 50, 11263 (1994)CrossRefGoogle Scholar
  99. [99]
    Brouwer P.W., and Beenakker C.W.J., Phys. Rev. B 51, 7739 (1995)CrossRefGoogle Scholar
  100. [100]
    Brouwer P.W., preprint (cond-mat/9501025)Google Scholar
  101. [101]
    Efetov K.B., Adv. Phys. 32, 53 (1983)MathSciNetCrossRefGoogle Scholar
  102. [102]
    Iida S., Weidenmüller H.A., and Zuk J.A., Phys. Rev. Lett. 64, 583 (1990); Annals of Phys. 200, 219 (1990)CrossRefGoogle Scholar
  103. [103]
    Prigodin V.N., Efetov K.B., and Iida S., Phys. Rev. Lett. 71, 1230 (1993)CrossRefGoogle Scholar
  104. [104]
    Pluhar A., et al, Phys. Rev. Lett. 73, 2115 (1994)CrossRefGoogle Scholar
  105. [105]
    Macêdo A.M.S., preprint (cond-mat/9404039)Google Scholar
  106. [106]
    Efetov K.B., Phys. Rev. Lett. 74, 2299 (1995)CrossRefGoogle Scholar
  107. [107]
    Mello P.A., and Seligman T.H., Nucl. Phys. A 344, 489 (1980); Mello, P.A., J. Phys. A 23, 4061 (1990)CrossRefGoogle Scholar
  108. [108]
    Berry M.V., Proc. R. Soc. Lond. A 400, 229 (1985)CrossRefGoogle Scholar
  109. [109]
    Mello P.A., and Pichard J.-L., J. Phys. 1, 493 (1991); see also ref. [73]Google Scholar
  110. [110]
    In Eq. (1.42) we have omitted phase factors which reflect the arbitrariness of the decomposition Eq. (1.41) for the CUE case. None of the results reported here are affected; see ref. [109] for a full discussion. Also note that Πi. runs from i =1to 2 for the COE and i = 1 to 4 for the CUE.Google Scholar
  111. [111]
    Politzer, H.D., Phys. Rev. B 40, 11917 (1989)CrossRefGoogle Scholar
  112. [112]
    Büttiker M., Phys. Rev. B 33, 3020 (1986)CrossRefGoogle Scholar
  113. [113]
    Schmidt B., and Müller-Groeling A., Phys. Rev. B 47, 12732 (1993) and references thereinCrossRefGoogle Scholar
  114. [114]
    Doron E., and Smilansky U., Nucl. Phys. A 545, C455 (1992)CrossRefGoogle Scholar
  115. [115]
    Classical chaotic scattering is defined in two equivalent ways. The scattering is chaotic if (1) the dynamics in the fraction of phase space which is trapped for an infinite time is chaotic in the closed system sense, or (2) if as one iterates the scattering map the dynamics is chaotic in the closed system sense as the number of iterations goes to infinity. The connection between scattering and the infinite time limit is very close, as can be seen by the relation between the escape rate and the fractal dimension of the permanently trapped part of phase space. Clearly, neither of these definitions addresses the nature of the short paths in a single pass through the scattering region. In general there will be short non-ergodic paths even in a completely chaotic system.Google Scholar
  116. [116]
    Feshbach H., Porter C.E., and Weisskopf V.F., Phys. Rev. 96, 448 (1954); Feshbach, H., “Topics in the Theory of Nuclear Reactions,” in Reaction Dynamics, New York: Gordon and Breach, 1973CrossRefGoogle Scholar
  117. [117]
    Mello P.A., Pereyra P., and Seligman T.H., Ann. Phys. (N.Y.) 161, 254 (1985); Friedman, W.A., and Mello, P.A., Ann. Phys. (N.Y.) 161, 276 (1985)MathSciNetCrossRefGoogle Scholar
  118. [118]
    Hua L.K., Harmonic Analysis of Functions of Several Complex Variables in the Classical Domain, Providence, RI: Amer. Math. Soc. 1963Google Scholar
  119. [119]
    Agassi D., Weidenmüller H.A., and Mantzouranis G., Phys. Rep. 22, 145 (1975)CrossRefGoogle Scholar
  120. [120]
    Weiss D., et al., Phys. Rev. Lett. 66, 2790 (1991)CrossRefGoogle Scholar
  121. [121]
    Weiss D., et al., Phys. Rev. Lett., 70, 4118 (1993); Weiss, D., et al., Surf. Sci. 305, 408 (1994); Weiss, D., and Richter, K., Physica D 83, 290, (1995)CrossRefGoogle Scholar
  122. [122]
    Schuster R., et al., Phys. Rev. B 49, 8510 (1994)CrossRefGoogle Scholar
  123. [123]
    For reviews of Coulomb blockade effects see: Grabert H., and Devoret M.H., Single Charge Tunneling, New York: Plenum Press, 1992: Kastner, M., Rev. Mod. Phys. 64, 849 (1992)CrossRefGoogle Scholar
  124. [124]
    Jalabert R.A., Stone A.D., and Alhassid Y., Phys. Rev. Lett. 68, 3468 (1992)CrossRefGoogle Scholar
  125. [125]
    Prigodin V.N., Efetov K.B., and Iida S., Phys. Rev. Lett. 71, 1230 (1993); Phys. Rev.B 51, 17223 (1995)CrossRefGoogle Scholar
  126. [126]
    Bruus H., and Stone A.D., Phys. Rev. B 50, 18275 (1994); Physica B 189, 43 (1993); Surf Sci. 305, 490 (1994)CrossRefGoogle Scholar
  127. [127]
    Mucciolo E.R., Prigodin V.N., and Altshuler B.L., Phys. Rev. B 51, 1714 (1995); Alhassid, Y., and Lewenkopf, C.H., preprint (March 1995)CrossRefGoogle Scholar
  128. [128]
    Chang A.M., et al., preprint (July 1995)Google Scholar
  129. [129]
    On orbital magnetism in disordered metals, see, for instance: Oh S., Zyuzin A.Yu., and Serota R.A., Phys. Rev. B 44, 8858 (1991); Altshuler, B.L., Phys. Rev. B 47, 10340 (1993); and references thereinCrossRefGoogle Scholar
  130. [130]
    Lévy P.L., et al., Phys. Rev. Lett. 64, 2074 (1990)CrossRefGoogle Scholar
  131. [131]
    Chandrasekhar V., et al., Phys. Rev. Lett. 67, 3578 (1991)CrossRefGoogle Scholar
  132. [132]
    Lévy L.P., et al., Physica (Amsterdam) 189B, 204 (1993)Google Scholar
  133. [133]
    Mailly D., Chapelier C, and Benoit A., Phys. Rev. Lett. 70, 2020 (1993)CrossRefGoogle Scholar
  134. [134]
    von Oppen F, and Reidel E.K., Phys. Rev. B 48, 9170 (1993); Shapiro, B., Physica (Amsterdam) 200A, 498 (1993); Agam, O., J. Phys. I (France) 4, 697 (1994)CrossRefGoogle Scholar
  135. [135]
    von Oppen F., Phys. Rev. B 50, 17151 (1994)CrossRefGoogle Scholar
  136. [136]
    Ullmo D., Richter K., and Jalabert R.A., Phys. Rev. Lett. 74, 383 (1995); preprint (July 1995)CrossRefGoogle Scholar
  137. [137]
    Fromhold T.M., et al., Phys. Rev. Lett. 72, 2608 (1994)CrossRefGoogle Scholar
  138. [138]
    Müller G., et al., preprint (1995), and private communicationsGoogle Scholar
  139. [139]
    Shepelyansky D.L., and Stone A.D., Phys. Rev. Lett. 74, 2098 (1995)CrossRefGoogle Scholar
  140. [140]
    Mott N.F., and Davies E.A., Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1971)Google Scholar
  141. [141]
    McDonald and Kaufman, Phys. Rev. A 37, 3067 (1988)MathSciNetCrossRefGoogle Scholar
  142. [142]
    Bennetin and Strelcyn, Phys. Rev. A 17, 773 (1978)CrossRefGoogle Scholar
  143. [143]
    Bunimovic L.A., Funkt. Analiz. Jego Prilog. 8, 73 (1974)MathSciNetGoogle Scholar
  144. [144]
    Iu C, et al, Phys. Rev. Lett. 66, 145 (1991)CrossRefGoogle Scholar
  145. [145]
    Simons B.D., et al., Phys. Rev. Lett. 71, 2899 (1993)CrossRefGoogle Scholar
  146. [146]
    Müller G., Boebinger G.S., Mathur H., Pfeiffer L.N., and West K.W., preprint (1994)Google Scholar
  147. [147]
    Pfeiffer, Loren, et al., Appl. Phys. Lett. 55, 1888 (1989)CrossRefGoogle Scholar
  148. [148]
    Spector J., et al., Surf. Sci. 228, 283 (1990)CrossRefGoogle Scholar
  149. [149]
    Thornton T.J., et al., Phys. Rev. Lett. 63, 2128 (1989)CrossRefGoogle Scholar
  150. [150]
    Skocpol W.J., et al., Phys. Rev. Lett. 56, 2865 (1985)CrossRefGoogle Scholar
  151. [151]
    Licini J.C., et al., Phys. Rev. Lett. 55, 2987 (1985)CrossRefGoogle Scholar
  152. [152]
    Timp G., et al., Phys. Rev. Lett. 59, 732 (1987a)CrossRefGoogle Scholar
  153. [153]
    Timp G., et al., Phys. Rev. Lett. 58, 2814 (1987b)CrossRefGoogle Scholar
  154. [154]
    Ford C.J.B., et al., J. Phys. C 21, L325 (1988)CrossRefGoogle Scholar
  155. [155]
    van Wees B.J., et al., Phys. Rev. Lett. 62, 2523 (1989)CrossRefGoogle Scholar
  156. [156]
    Kurdak C, et al., Phys. Rev. B 46, 6846 (1992)CrossRefGoogle Scholar
  157. [157]
    Katine J.A., et al., in Proc. 7th Int. Conf. Superlattices, Microstructures, and Microdevices, 1994, Superlattices and Microstructures, 16, 211 (1994)CrossRefGoogle Scholar
  158. [158]
    Beenakker C.W.J., and van Houten H., Phys. Rev. B 38, 3232 (1988)CrossRefGoogle Scholar
  159. [159]
    Altshuler B.L., Aronov A.G., and Khemelnitsky D.E., J. Phys. C 15, 7367 (1982)CrossRefGoogle Scholar
  160. [160]
    Fuchs K., Proc. of the Cambridge Phil. Soc. 34, 100 (1938)CrossRefGoogle Scholar
  161. [161]
    Das Sarma S., and Stern F., Phys. Rev. B 32, 8442 (1985)CrossRefGoogle Scholar
  162. [162]
    Ando T., Fowler A.B., and Stern F, Rev. Mod. Phys. 54, 437 (1982)CrossRefGoogle Scholar
  163. [163]
    Paalanen M.A., Tsui D.C., and Hwang J.C.M., Phys. Rev. Lett. 51, 2226 (1983)CrossRefGoogle Scholar
  164. [164]
    Harrang J.P., et al., Phys. Rev. B 32, 8126 (1985)CrossRefGoogle Scholar
  165. [165]
    Coleridge P.T., Stoner R., and Fletcher R., Phys. Rev. B 39, 1120 (1989)CrossRefGoogle Scholar
  166. [166]
    Lin W.A., and Jensen R.V., in Proc. 4th Drexel Symposium on Quantum Nonin-tegrability, (1994)Google Scholar
  167. [167]
    Marcus CM., et al., Semicond. Sci. Technol. 9, 1897 (1994b)CrossRefGoogle Scholar
  168. [168]
    Berry M.J., Katine J.A., Westervelt R.M., and Gossard A.C., to be submitted to Phys. Rev. B (1995)Google Scholar
  169. [169]
    Kouwenhoven L.P., et al., Phys. Rev. B 40, 8083 (1989)CrossRefGoogle Scholar
  170. [170]
    Hastings M.B., Stone A.D., and Baranger H.U., submitted to Phys. Rev. B, (1995)Google Scholar
  171. [171]
    Keller M.W., et al., Physica B 1029, 194–196, 1994Google Scholar
  172. [172]
    Keller M.W., et al., to be published (1995b)Google Scholar
  173. [173]
    Crommie M.F., Lutz C.P., and Eigler D., Science 262, 218 (1992)CrossRefGoogle Scholar
  174. [174]
    Heller E.J., et al., Nature 369, 464 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Harold U. Baranger
    • 1
  • R. M. Westervelt
    • 2
  1. 1.Bell LaboratoriesMurray HillUSA
  2. 2.Division of Applied Sciences and Department of PhysicsHarvard UniversityCambridgeUK

Personalised recommendations