Skip to main content

Atom Optics: Using Light to Position Atoms

  • Chapter

Abstract

In most conventional lithography techniques, a light-sensitive resist is used to transfer a pattern from a mask to a substrate. The process is massively parallel because one mask can be used to expose millions of features at the same time. The minimum size of the features that can be created with conventional lithography is of the order of half the wavelength of the light being used. Extensions of optical lithographic techniques, involving deep ultraviolet light, are predicted to reach a limit of approximately 0.10 μm[l] by the year 2001. Other exposure technologies such as electron beam and x-ray, that have been proposed for producing smaller features than ultraviolet light, are problematic. For example, in conventional electron beam systems the writing process is serial, so large complicated patterns take a very long time to write. Moreover, in both electron beam and x-ray lithography, the masks and the substrates can be damaged by the high energy beams. Thus, there is great interest in developing parallel techniques for creating nanometer-scale features without damage and without masks. The new field of atom optics offers various massively parallel fabrication techniques which hold the promise for creating nanometer-scale features with good contrast and high resolution using low energy atomic beams. These advantages are augmented by the “direct-write” nature of atom optical fabrication, that is, structures can be deposited directly on a substrate without the intermediate process steps involved with using a resist.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Working Group Reports, Semiconductor Technology Workshop, Semiconductor Industry Association, San Jose, CA (1993)

    Google Scholar 

  2. Gordon J.P., and Ashkin A., Phys. Rev. A 21, 1606 (1980)

    Article  Google Scholar 

  3. Cook R.J., Phys. Rev. A 20, 224 (1979)

    Article  Google Scholar 

  4. Cohen-Tannoudji C, Dupont-Roc J., Grynberg G., Atom-Photon Interactions: Basic Processes and Applications, New York: John Wiley and Sons, 1992

    Google Scholar 

  5. Bjorkholm J.E., Freeman R.R., Ashkin A., and Pearson D.B., Phys. Rev. Lett. 41, 1361 (1978); Bjorkholm, J.E., Freeman, R.R., Ashkin A., and Pearson, D.B., Opt. Lett. 5, 111 (1980)

    Article  Google Scholar 

  6. Balykin V.I., et al., J. Mod. Opt. 35, 17 (1988)

    Article  Google Scholar 

  7. Sleator T., Pfau T., Balykin V., and Mlynek J., Appl. Phys. B 54, 375 (1992)

    Article  Google Scholar 

  8. Balykin V.I., and Letokhov V.S., Opt. Commun. 64, 151 (1987)

    Article  Google Scholar 

  9. Gallatin G.M., and Gould P.L., J. Opt. Soc. Am. B 8, 502 (1991)

    Article  Google Scholar 

  10. McClelland J.J., and Scheinfein M.R., J Opt. Soc. Am. B 8, 1974 (1991)

    Article  Google Scholar 

  11. Timp G.L., Behringer R.E., Tennant D.M., Cunningham J.E., Prentiss M., and Berggren K.K., Phys. Rev. Lett. 69, 1636 (1992); and Natarajan, Vasant, Behringer, R.E. and Timp, G., J. Vac. Sci. Tech. B to be published Nov./Dec. (1995)

    Article  Google Scholar 

  12. Prentiss M.G., and Ezekiel S., Phys. Rev. Lett. 56, 46 (1986)

    Article  Google Scholar 

  13. Salomon C., et al., Phys. Rev. Lett. 59, 1659 (1987)

    Article  Google Scholar 

  14. Balykin V.I., et al., Opt. Lett. 13, 958 (1988)

    Article  Google Scholar 

  15. Jessen P.S., Gerz C, Lett P.D., Phillips W.D., Rolston S.L., Spreeuw R.J.C., and Westbrook C.I., Phys. Rev. Lett. 69, 49 (1992)

    Article  Google Scholar 

  16. Verkerk P., et al., Phys. Rev. Lett. 68, 3861 (1992)

    Article  Google Scholar 

  17. Hemmerich A., and Hänsen T., Phys. Rev. Lett. 70, 1410 (1993)

    Article  Google Scholar 

  18. Marte P., Dum R., Taïeb R., Lett P.D., and Zoller P., Phys. Rev. Lett. 71, 1335 (1993)

    Article  Google Scholar 

  19. Taïeb R., Marte P., Dum R., and Zoller P., Phys. Rev. A 47, 4986 (1993)

    Article  Google Scholar 

  20. Grynberg G., et al., Phys. Rev. Lett. 70, 2249 (1993)

    Article  Google Scholar 

  21. Verkerk P., Meacher D., Coates A., Courtois J.-Y., Guibal S., Lounis B., Saloman C, and Grynberg G., Europhys. Lett. 26, 171 (1994)

    Article  Google Scholar 

  22. Balykin V.I., Letokhov V.S., Ovchinnikov Yu. B., and Sidorov A.I., Phys. Rev. Lett. 60, 2137 (1988)

    Article  Google Scholar 

  23. Kasevitch M.A., Weiss D.S., and Chu S., Opt. Lett. 15, 607 (1990)

    Article  Google Scholar 

  24. Kaiser R., et al., Opt. Commun. 104, 234 (1994)

    Article  Google Scholar 

  25. Gould P.L., Ruff G.A., and Pritchard D.E., Phys. Rev. Lett. 56, 827 (1986)

    Article  Google Scholar 

  26. Ekstrom C.R., Keith D.W., and Pritchard D.E., Appl. Phys. B 54, 369 (1992)

    Article  Google Scholar 

  27. Carnal O., Sigel M., Sleator T., Takuma H., and Mlynek J., Phys. Rev. Lett. 67, 3231 (1991)

    Article  Google Scholar 

  28. McClelland J.J., Scholten R.E., Palm E.C., and Celotta R.J., Science 262, 877 (1993)

    Article  Google Scholar 

  29. Scholten R.E., McClelland J.J., Palm E.C., Gavrin A., and Celotta R.J., J. Vac. Sci. Technol. 12, 1847 (1994)

    Article  Google Scholar 

  30. Cohen-Tannoudji C., and Phillips W.D., Physics Today 43, 33 (October, 1990)

    Article  Google Scholar 

  31. McGowan R.W., and Lee S.A., in Abstracts of Contributed Papers, ICAP XIV, Boulder, CO, July 31-August 5, (1994), p. 2H-7; and McGowan, R.W. et al, to be published in Optics Letters

    Google Scholar 

  32. Berggren K.K., Prentiss M., Timp G.L., and Behringer R.E., J. Opt. Soc. Am. B 11, 1166 (1994)

    Article  Google Scholar 

  33. McClelland J.J., (submitted to J. Opt. Soc. Am. B)

    Google Scholar 

  34. Marksteiner S., Walser R., Marte P., and Zoller P., Appl. Phys. B 60, 145 (1995)

    Article  Google Scholar 

  35. Maluf N.I., Chou S.Y., McVittie J.P., Kuan S.W.J., Allee D.R., and Pease R.F.W., J. Vac. Sci. Technol. B 7, 1497 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

McClelland, J.J., Prentiss, M. (1999). Atom Optics: Using Light to Position Atoms. In: Timp, G. (eds) Nanotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0531-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0531-9_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6805-5

  • Online ISBN: 978-1-4612-0531-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics