Advertisement

ClaraT: Instructional Software for Fractal Pattern Generation and Analysis

  • Bruce T. Milne
  • Alan R. Johnson
  • Steven Matyk

Abstract

Few recently developed quantitative approaches have enlivened the sciences as much as fractal geometry (Mandelbrot 1982) and related topics of scaling and universality (Stanley et al. 1996). The classic example of a fractal is a coastline, which by virtue of curves and crenulations, is a very jagged line weaving over the planar surface of the globe, thereby creating an object that is too crooked to be a one-dimensional line, but too straight to completely fill the plane. Moreover, magnification of a small part of the coastline reveals yet greater detail because the part is essentially a shrunken version of the whole. Thus, a coastline is neither one nor two dimensional because ruggedness occurs at many scales. Rather, coastlines have dimensions between 1 and 2; they are fractal.

Keywords

Fractal Dimension Iterate Function System Percolation Cluster Infinite Cluster Diffusion Limited Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnsley, M. 1988. Fractals Everywhere. Academic Press, London.Google Scholar
  2. Bascompte, J., and R.V. Sole. 1996. Habitat fragmentation and extinction thresholds in spatially explicit models. Journal of Animal Ecology 65: 465–473.CrossRefGoogle Scholar
  3. Binney, J.J., N.J. Dowrick, A.J. Fisher, and M.E.J. Newman, 1993. The Theory of Critical Phenomena: An Introduction to the Renormalization Group. Oxford Science Publications, Oxford.Google Scholar
  4. Burrough, P.A. 1981. Fractal dimensions of landscapes and other environmental data. Nature 294: 241–243.CrossRefGoogle Scholar
  5. Cressie, N.A.C. 1991. Statistics for Spatial Data. John. Wiley & Sons, New York.Google Scholar
  6. Creswick, R.J., H.A. Farach, and C.P. Poole Jr. 1992. Introduction to Renormalization Group Methods in Physics. John Wiley & Sons, New York.Google Scholar
  7. Deutsch, C.V., and A.G. Journel. 1992. GSLIB: Geostatistical Software Library and User's Guide. Oxford University Press, New York.Google Scholar
  8. Feder, J. 1988. Fractals. Plenum Press, New York.Google Scholar
  9. Feller, W. 1951. The asymptotic distribution of the range of sums of independent random variables. Annals of Mathematical Statistics 22: 427.CrossRefGoogle Scholar
  10. Forman, R.T.T., and M. Godron. 1986. Landscape Ecology. John Wiley & Sons, New York.Google Scholar
  11. Gardner, R.H., B.T. Milne, M.G. Turner, and R.V. O'Neill 1987. Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecology 1: 19–28.CrossRefGoogle Scholar
  12. Gould, H., and J. Tobochnik. 1988. An Introduction to Computer Simulation Methods: Applications to Physical Systems. Part 2. Addison-Wesley, Reading. MA.Google Scholar
  13. Grey, F., and J.K. Kjems. 1989. Aggregates, broccoli and cauliflower. Physical D 38: 154–159.CrossRefGoogle Scholar
  14. Johnson, A.R., B.T. Milne, and J.A. Wiens. 1992. Diffusion in fractal landscapes: simulations and experimental studies of Tenebrionid beetle movements. Ecology 73: 1968–1983.CrossRefGoogle Scholar
  15. Johnson, A.R., C.A. Hatfield, and B.T. Milne. 1995. Simulated diffusion dynamics in river networks. Ecological Modelling 83: 311–325.CrossRefGoogle Scholar
  16. Krummel, J.R., R.H. Gardner, G. Sugihara, R.V. O'Neill, and P.R. Coleman. 1987. Landscape patterns in a disturbed environment. Oikos 48: 321–324.CrossRefGoogle Scholar
  17. Loreto, V., L. Pietronero, A. Vespignani, and S. Zapperi. 1995. Renormalization group approach to the critical behavior of the forest-fire model. Physical Review Letters 75: 465–468.PubMedCrossRefGoogle Scholar
  18. Mandelbrot, B. 1982. The Fractal Geometry of Nature. W.H. Freeman, New York.Google Scholar
  19. Meakin, P. 1986. A new model for biological pattern formation. Journal of Theoretical Biology 118: 101–113.PubMedCrossRefGoogle Scholar
  20. Milne. B.T. 1991a. Lessons from applying fractal models to landscape patterns. In: Quantitative Methods in Landscape Ecology, pp. 199–235. M.G. Turner and R.H. Gardner (eds.). Springer-Verlag, New York.Google Scholar
  21. Milne, B.T. 1991b. The utility of fractal geometry in landscape design. Landscape and Urban Planning 21: 81–90.CrossRefGoogle Scholar
  22. Milne, B.T. 1992. Spatial aggregation and neutral models in fractal landscapes. American Naturalist 139: 32–57.CrossRefGoogle Scholar
  23. Milne, B.T. 1997. Applications of fractal geometry in wildlife bilolgy. In: Wildlife and Landscape Ecology, pp. 32–69. J.A. Bissonette (ed.). Springer-Verlag, New York.CrossRefGoogle Scholar
  24. Milne, B.T., and A.R. Johnson. 1993. Renormalization relations for scale transformation in ecology. In: Some Mathematical Questions in Biology: Predicting Spatial Effects in Ecological Systems, pp. 109–128. R.H. Gardner (ed.). American Mathematical Society,Providence, RI.Google Scholar
  25. Milne, B.T., A.R. Johnson, T.H. Keitt, C.A. Hatfield, J. David, and P. Hraber. 1996. Detection of critical densities associated with piñon-juniper woodland ecotones. Ecology 77: 805–821.CrossRefGoogle Scholar
  26. Orbach, R. 1986. Dynamics of fractal networks. Science 231: 814–819.PubMedCrossRefGoogle Scholar
  27. Peitgen, H.-O., and D. Saupe (eds.). 1988. The Science of Fractal Images. Springer-Verlag, New York.Google Scholar
  28. Plotnick, R.E., R.H. Gardner, and R.V. O'Neill. 1993. Lacunarity indices as measures of landscape texture. Landscape Ecology 8: 201–211.CrossRefGoogle Scholar
  29. Stanley, H.E. 1986. Form: an introduction to self-similarity and fractal behavior. In: On Growth and Form: Fractal and Non-Fractal Patterns in Physics, pp. 21–53. H.E. Stanley and N. Ostrowsky (eds.). Martinus Nijhoff Publishers. Dordrect.Google Scholar
  30. Stanley, H.E., L.A.N. Amaral, S.V. Buldyrev, A.L. Goldberger, S. Havlin, H. Leschhorn, P. Maass, H.A. Makse, C.-K. Peng, M.A. Salinger, M.H.R. Stanley, and G.M. Viswanathan. 1996. Scaling and universality in animate and inanimate systems. Physica A 231: 20–48.CrossRefGoogle Scholar
  31. Stauffer, D. 1985. Introduction to Percolation Theory. Taylor & Francis, London.CrossRefGoogle Scholar
  32. Tilman, D., and D. Wedin. 1991. Oscillations and chaos in the dynamics of a perennial grass. Nature 353: 653–655.CrossRefGoogle Scholar
  33. Turcotte, D.L. 1992. Fractals and chaos in geology and geophysics. Cambrideg University Press. Cambridge.Google Scholar
  34. Voss, R.F. 1988. Fractals in nature: from characterization to simulation. In: The Science of Fractal Images, pp. 21–70. H.-O. Peitgen and D. Saupe (eds.). Springer-Verlag, New York.CrossRefGoogle Scholar
  35. West, G.B., J.H. Brown, and B.J. Enquist. 1997. A general model for the origin of biometric scaling laws in bilogy. Science 276: 122–124.PubMedCrossRefGoogle Scholar
  36. Zallen, R. 1983. The Physics of Amorphous Solids. John Wiley & Sons, New York.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Bruce T. Milne
  • Alan R. Johnson
  • Steven Matyk

There are no affiliations available

Personalised recommendations