Skip to main content

Nonlinear Kinetic Models with Chemical Reactions

  • Chapter
Modeling in Applied Sciences

Abstract

This chapter reports on the progress in mathematical kinetic theory, based on the Boltzmann ideas applied to modeling a gas of particles with inelastic collisions and chemical reactions. Research perspectives and open problems are explored. Compared to the classical Boltzmann equation for a simple gas, kinetic models with chemical reactions exhibit new mathematical difficulties due the contribution of the particle internal states to the gas evolution and the existence of reaction channels with several reaction participants. The contents of this chapter show how methods introduced in the study of the Boltzmann equation for a simple gas can be non-trivially extended to investigate kinetic equations with chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkeryd L., On the Boltzmann equation I k, II, Arch. Rat. Mech. Anal., 45 (1972), 1–34.

    MathSciNet  MATH  Google Scholar 

  2. Babovsky H., On a simulation scheme for the Boltzmann equation, Eur. J. Mech. B, 8 (1989), 41–55.

    MathSciNet  MATH  Google Scholar 

  3. Babovsky H. and Illner R., A convergence proof for Nambu’s simulation method for the full Boltzmann equation,SIAM J. Num. Anal., 26 (1989), 45–65.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bardos C., Golse F., and Levermore D., Fluid dynamic limits of kinetic equations I, J. Stat. Phys., 63 (1991), 323–344.

    Article  MathSciNet  Google Scholar 

  5. Bellomo N., Palczewski A., and Toscani G., Mathematical Topics in Nonlinear Kinetic Theory, World Scientific (1988).

    MATH  Google Scholar 

  6. Bellomo N., Esteban M., and Lachowicz M., Nonlinear kinetic equations with dissipative collisions, Appl. Math. Lett., 8 (1995), 47–52.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellomo N., Letallec P., and Perthame B., Nonlinear Boltz- mann equation solutions and applications to fluid dynamics,Appl. Mech. Rev., 48 (1995), 777–794.

    Article  Google Scholar 

  8. Boffi V. and Spiga G., Rigorous iterated solutions to a nonlinear integral evolution problem in particle transport theory, J. Math. Phys., 23 (1982), 1859–1864.

    Article  MathSciNet  MATH  Google Scholar 

  9. Boffi V. and Spiga G., Global solutions to a nonlinear integral evolution problem in particle transport theory, J. Math. Phys., 23 (1982), 2299–2303.

    Article  MathSciNet  MATH  Google Scholar 

  10. Boffi V. and Spiga G., All equation of Hammerstein type arising in particle transport theory, J. Math. Phys., 24 (1983), 1625–1629.

    Article  MathSciNet  MATH  Google Scholar 

  11. Boffi V., Bodwen R., and Spiga G., On the solutions to a class of nonlinear integral equations arising in transport theory, J. Math. Phys., 25 (1984), 3444–3450.

    Article  MathSciNet  MATH  Google Scholar 

  12. Boffi V. and Spiga G., Extended kinetic theory for gas mixtures in the presence of removal and regeneration effects, Z. Angew. Math. Phys., 37 (1986), 27–42.

    Article  MathSciNet  MATH  Google Scholar 

  13. Boffi V. and Rossani A., On the Boltzmann system for a mixture of reacting gases, Z. Angew. Math. Phys., 41 (1990), 254–269.

    Article  MathSciNet  MATH  Google Scholar 

  14. Boffi V. and Zanette D., Stationary extended kinetic theory for a gas of hard spheres, Nuovo Cimento, 14D (1992), 429–448.

    Article  Google Scholar 

  15. Boltzmann L., Further studies on the thermal equilibrium of gas molecules, in Kinetic Theory Volume 2, Irreversible Processes, Brush S.G. Ed., Pergamon (1966).

    Google Scholar 

  16. Cercignani C., The Boltzmann equation and its applications, Springer (1988).

    Book  MATH  Google Scholar 

  17. Curtiss C., The classical Boltzmann equation of a gas of diatomic molecules, J. Chem. Phys., 75 (1981), 376–378.

    Article  MathSciNet  Google Scholar 

  18. Diperna R.J. and Lions P.L., On the Cauchy problem for the Boltzmann equation: global existence and weak stability results, Ann. Math., 130 (1989), 321–366.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ern A. and Glovanglgll V., Multicomponent Transport Algorithms, Lect. Notes in Phys., m24, Springer (1994).

    Google Scholar 

  20. Ern A. and Giovangigli V., The kinetic chemical equilibrium regime, to appear in Physica A.

    Google Scholar 

  21. Grad H., Statistical mechanics, thermodynamics and fluid dynamics of systems with an arbitrary number of integrals, Commun. Pure Appl. Math., 5 (1952), 455–494.

    Article  MathSciNet  MATH  Google Scholar 

  22. Grunfeld C.P., On a class of kinetic equations for reacting gas mixtures with multiple collisions, C.R. Acad. Sci. Paris Serie I, 316 (1993), 953–958.

    MathSciNet  Google Scholar 

  23. Grünfeld C.P. and Georgescu E., On a class of kinetic equations for reacting gas mixtures, Preprint 604/11/93, BiBoS, Universität Bielefeld (1993).

    Google Scholar 

  24. Grünfeld C.P. and Georgescu E., On a class of kinetic equations for reacting gas mixtures, Matematicheskaia Fizika, Analiz, Geometria, 2 (1995), 408–435.

    MATH  Google Scholar 

  25. Grünfeld C.P. and Marinescu D., On the numerical simulation of a class of reactive Boltzmann type equations,Transp. Theory Stat Phys., 26 (1997), 287–318.

    Article  MATH  Google Scholar 

  26. Grünfeld C.P., On the Cauchy problem for a class of space homogeneous Boltzmann-like equations for reacting gas mixtures, Preprint ISS-INFLPR, Bucharest June (1998).

    Google Scholar 

  27. Ganapol B.D., Spiga G., and Zanette D.H., An accurate evaluation of the distribution functions of nonlinear extended theory, Math. Models Meth. AppL Sci., 2 (1992), 223–237.

    Article  MathSciNet  MATH  Google Scholar 

  28. Hoffman D. and Dahler J., The Boltzmann equation for a polyatomic gas, J. Statist. Phys., 1 (1969), 521–557.

    Article  Google Scholar 

  29. Kuscer I., Dissociation and recombination in a inhomogeneous gas, Physica A, 176 (1991), 542–556.

    Article  MathSciNet  Google Scholar 

  30. Kennedy C.A., Bibliography for the kinetic theory of reacting gases, CECR Report 94–01, University of California, San Diego Center for Energy and Combustion Research (1994).

    Google Scholar 

  31. Kennedy C.A., Supplement to [KEa], Sandia Nat. Lab. (1995).

    Google Scholar 

  32. Kuipers L. and Niederreiter H., Uniform Distribution of Sequences, Wiley (1974).

    MATH  Google Scholar 

  33. Ludwig G. and Heil L., Boundary-layer theory with dissociation and ionization, in Advances in Applied Mechanics vol. 6, Dryden H.L. and Von Kärmän Th. Eds., Academic Press (1960).

    Google Scholar 

  34. Mason E. and Monchick A., Heat conductivity of polyatomic and polar gases, J. Chem. Phys., 36 (1962), 1622–1639.

    Article  Google Scholar 

  35. Neunzert H. and Struckmeier J., Particle methods for the Boltzmann equation, in Acta Numerica, Cambridge University Press (1995).

    Google Scholar 

  36. Spiga G., Rigorous solution to extended kinetic equations for homogeneous gas mixtures, in Mathematical Aspects of Fluid and Plasma Dynamics, Lect. Notes in Phys., Vol. 1460, Toscani G., Boffi V., Rionero S. Eds., Springer (1991).

    Chapter  Google Scholar 

  37. Sack W., Neunzert H., and Koppenwallner G., Entwicklung eines Partikelverfahrens für reaktive Strömungen in verdünnten Gasen, Mathematik: Schlüsseltechnologie für die Zukunft, Verbundprojekte zwischen Universität und Industrie Berlin, Hoffmann K.H. et al. Eds, Springer (1997).

    Google Scholar 

  38. Snider R., Quantum-mechanical modified Boltzmann equation for degenerate internal states, J. Chem. Phys., 32 (1960), 1051–1060.

    Article  MathSciNet  Google Scholar 

  39. Spigler R., Asymptotic analysis and reaction-diffusion approximation for BGK kinetic models of chemical processes in multispecies gas mixtures, Z. Angew. Math. Phys., 44 (1993), 812–827.

    Article  MathSciNet  MATH  Google Scholar 

  40. Spigler R. and Zanette D., A BGK model for chemical processes: the reaction-diffusion approximation,Math. Models Meth. Appl. Sci., 4 (1994) 35–47.

    Article  MathSciNet  MATH  Google Scholar 

  41. Voronina V. A., A method for constructing a solution of the spatially homogeneous Boltzmann equation for a mixture of gases (English), U.S.S.R. Comput. Math. Math. Phys., 28 (1988), 196–198.

    Article  MathSciNet  MATH  Google Scholar 

  42. Voronina, V. A., A method of constructing the solution of the system of Boltzmann equations for reacting gases (English), U.S.S.R. Comput. Math. Math. Phys., 28 (1988), 99–104.

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang Chang C., Uhlenbeck G., and DE Boer J., The heat conductivity and viscosity of polyatomic gases, in Studies in Statistical Mechanics, Vol. 2, De Boer J. and Uhlenbeck G.E. Eds., North Holland (1964).

    Google Scholar 

  44. Waldmann L., Transporterscheinungen in Gases von Mittlerem Druck, in Handbuch der Physik, Vol. 12, Flüge S. Ed., Springer (1958).

    Google Scholar 

  45. Wiesen B., On a phenomenological generalized Boltzmann equation, J. Math. Phys., 33 (1992), 1786–1798.

    Article  MathSciNet  MATH  Google Scholar 

  46. Wiesen B., On the derivation of a phenomenological Boltzmann equation for a polyatomic gas, Preprint No 198, Fachbereich Mathematik, Kaisersalutern Universität, June (1991).

    Google Scholar 

  47. Zanette D., Reducibility of a class of nonlinear kinetic integral equations, J. Phys A: Math. Gen., 25 (1992), 4167–4180.

    Article  MathSciNet  MATH  Google Scholar 

  48. Zanette D., A BBGKY hierarchy for the extended kinetic theory, Physica A, 162 (1990), 414–426.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grünfeld, C.P. (2000). Nonlinear Kinetic Models with Chemical Reactions. In: Bellomo, N., Pulvirenti, M. (eds) Modeling in Applied Sciences. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0513-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0513-5_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6797-3

  • Online ISBN: 978-1-4612-0513-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics