Skip to main content

What Can Computers Do?

  • Chapter
Ultimate Zero and One

Abstract

In Chapter 1, we discussed the trend toward miniaturization that is luring the computer industry into the unpredictable realm of quantum mechanics. In Chapter 2, we described how a computer that operates quantum-mechanically can harness exotic phenomena, such as entanglement and non-clonability, that have no parallels in the everyday world around us. The question is whether such phenomena confer an advantage. Do they make the capabilities of a quantum computer surpass those of a classical computer? This is an important question because it will require a massive financial investment to create quantum computers. We have to be able to determine whether the effort and expense will be justified.

Computers are useless. They only give answers.

—Pablo Picasso

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 37.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 3

  • Abrams, D., and S. Lloyd. “A Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors,” http://xxx.lanl.gov/archive/quant-ph/9807070 (1998).

  • Appel, K., and W. Haken. “The Solution of the Four-Color-Map Problem,” Scientific American,Vol. 237, No. 4, pp. 108–121 (1

    Article  MathSciNet  Google Scholar 

  • Beals, R., Buhrman, H., Cleve, R., Mosca, M., and R. de Wolf. “Quantum Lower Bounds by Polynomials,” Proceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS’ 98, Palo Alto, CA, November 8–11, pp. 352–361

    Google Scholar 

  • Benioff, P. “The Computer as a Physical System: A Microscopic Quantum-Mechanical Hamiltonian Model of Computers as Represented by Turing Machines,” Journal of Statistical Physics,Vol. 22, pp. 563–591 (1980).

    Article  MathSciNet  Google Scholar 

  • Bennett, C. “Logical Reversibility of Computation,” IBM Journal of Research and Development,Vol. 17, pp. 525–532 (1973).

    Article  MATH  Google Scholar 

  • Bernstein, E., and U. Vazirani. “Quantum Complexity Theory,” Proceedings of the 25th Annual ACM Symposium on the Theory of Computing,pp. 11–20 (1993).

    Google Scholar 

  • Berthiaume, A., and G. Brassard. “The Quantum Challenge to Complexity Theory,” Proceedings of the 7th IEEE Conference on Structure in Complexity Theory,pp. 132–137 (1992).

    Google Scholar 

  • Berthiaume, A., and G. Brassard. “Oracle Quantum Computing,” Journal of Modern Optics,Vol. 41, No. 12, December, pp. 2521–2535 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  • Brassard, G., Hoyer, P., and A. Tapp. “Quantum Counting,” Proceedings of Automata, Languages, and Programming, 25th International Colloquium, ICALP’ 98, Aalborg, Denmark, 13-17 July, pp. 820–831 (1998).

    Chapter  Google Scholar 

  • Cerf, N., Grover, L., and C. Williams. “Nested Quantum Search and NP-Complete Problems,” Los Alamos preprint archive, http://xxx.lanl.gov/archive/quant-ph/9806078 (1998).

  • Crandall, R. Topics in Advanced Scientific Computation, TELOS/Springer Verlag, New York, pp. 125–126 (1996).

    MATH  Google Scholar 

  • Deutsch, D. “Quantum Theory, the Church-Turing Principle, and the Universal Quantum Computer,” Proceedings Royal Society London, Series A,Vol. 400, pp. 97–117 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  • Deutsch, D., and R. Jozsa. “Rapid Solution of Problems by Quantum Computation,” Proceedings Royal Society London, Series A,Vol. 439, pp. 553–558 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  • Durr, C, and P. Hoyer. “A Quantum Algorithm for Finding the Minimum,” Los Alamos preprint archive, http://xxx.lanl.gov/archive/quant-ph/9607014 (1996).

  • Feynman, R. “Simulating Physics with Computers,” International Journal of Theoretical Physics,Vol. 21, Nos. 6/7, pp. 467–488 (1982).

    Article  MathSciNet  Google Scholar 

  • Fijany, A., and C. Williams. “Quantum Wavelet Transforms: Fast Algorithms and Complete Circuits,” Spinger-Verlag Lecture Notes in Computer Science, Volume 1509, Springer-Verlag, Heidelberg (1999); also available as http://xxx.lanl.gov/abs/quant-ph/9809004.

  • Gill, J. “Computational Complexity of Probabilistic Turing Machines,” SIAM Journal of Computing,Vol. 6, No. 4, December, pp. 675–695 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  • Gorenstein, D. Finite Simple Groups,Plenum, New York (1982).

    MATH  Google Scholar 

  • Grover, L. “A Fast Quantum-Mechanical Algorithm for Database Search,” Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219 (1996).

    Google Scholar 

  • Grover, L. “A Fast Quantum-Mechanical Algorithm for Estimating the Median,” AT&T Bell Labs preprint (1996).

    Google Scholar 

  • Grover, L. “Quantum Mechanics Helps in Searching for a Needle in a Haystack,” Physical Review Letters,Vol. 79, pp. 325–328 (1997).

    Article  Google Scholar 

  • Grover, L. “Quantum Computers Can Search Rapidly by Using Almost Any Transformation,” Physical Review Letters,Vol. 80, pp. 4329–4333 (1998).

    Article  Google Scholar 

  • Hopcroft, J. “Turing Machines,” Scientific American, May, pp. 86–98 (1984).

    Google Scholar 

  • Jozsa, R. “Characterizing Classes of Functions Computable by Quantum Parallelism,” Proceedings Royal Society London, Series A,Vol. 435, pp. 563–574 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  • Kitaev, A. “Quantum Measurements and the Abelian Stabiliser Problem,” Los Alamos preprint archive, http://xxx.lanl.gov/archive/quant-ph/9511026 (1995).

  • Lenstra, A., Manasse, M., and J. Pollard. “The Number Field Sieve,” Proceedings of the 22nd ACM Symposium on the Theory of Computing, pp. 564–572 (1990).

    Google Scholar 

  • Lloyd, S. “Quantum-Mechanical Computers and Uncomputability,” Physical Review Letters,Vol. 71, pp. 943–946 (1993).

    Article  Google Scholar 

  • Lloyd, S. “Universal Quantum Simulators,” Science,Vol. 273, 23 August, pp. 1073–1078 (1996).

    Article  MathSciNet  Google Scholar 

  • Peres, A., and W. Zurek. “Is Quantum Theory Universally Valid?,” American Journal of Physics,Vol. 50, September, pp. 807–810 (1982).

    Article  Google Scholar 

  • Peres, A. “Einstein, Gödel, Bohr,” Foundations of Physics,Vol. 15, pp. 201–205 (1985).

    Article  MathSciNet  Google Scholar 

  • Shapiro, S., ed. “Church’s Thesis,” Encyclopedia of Artificial Intelligence, John Wiley & Sons, New York, pp. 99–100 (1990).

    Google Scholar 

  • Shor, P. “Algorithms for Quantum Computation: Discrete Logarithms and Factoring,” Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994).

    Google Scholar 

  • Silverman, R. “The Multiple Polynomial Quadratic Sieve,” Mathematics of Computing, Vol. 48, pp. 329–338 (1987).

    Article  MATH  Google Scholar 

  • Simon, D. “On the Power of Quantum Computation,” Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, pp. 116–123 (1994).

    Google Scholar 

  • Turing, A. “On Computable Numbers with an Application to the Entscheidungsproblem,” Proceedings of the London Mathematical Society, Vol. 42, pp. 230–265 (1937); erratum in Vol. 43, pp. 544-546 (1937).

    Article  Google Scholar 

  • van Dam, W. “Quantum Oracle Interrogation: Getting All the Information for Almost Half the Price”, Proceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS’ 98, Palo Alto, CA, November 8–11, pp. 362–367 (1998).

    Google Scholar 

  • Wiles, A. “Modular Elliptic Curves and Fermat’s Last Theorem,” Annals of Mathematics, Vol. 141. pp. 443–551 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  • Williams, C, and T. Hogg. “Exploiting the Deep Structure of Constraint Problems,” Artificial Intelligence Journal, Vol. 70, pp. 73–117 (1994).

    Article  MATH  Google Scholar 

  • Winograd, T. Understanding Natural Language, Academic Press, New York (1972).

    Google Scholar 

  • Yao, A. “Quantum Circuit Complexity,” Proceedings of the 34th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, pp. 352–360 (1993).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Colin P. Williams and Scott H. Clearwater

About this chapter

Cite this chapter

Williams, C.P., Clearwater, S.H. (2000). What Can Computers Do?. In: Ultimate Zero and One. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0495-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0495-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94769-3

  • Online ISBN: 978-1-4612-0495-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics