Skip to main content

Luminescence in Biosensor Design

  • Chapter
Biosensors with Fiberoptics

Part of the book series: Contemporary Instrumentation and Analysis ((CIA))

Abstract

The production of light during some biochemical reactions (bioluminescence) has been recognized as a powerful tool for biochemical and clinical analysis. The light emission can be measured with great sensitivity, and consequently analysis can be performed at very low detection levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McElroy, W. D. (1947) The energy source for bioluminescence in an isolated system.Proc. Nat. Acad. Sci. USA33, 342–345.

    Article  PubMed  CAS  Google Scholar 

  2. DeLuca, M. (1976) Firefly luciferase, inAdvances in Enzymologyvol. 44 (Meister, A., ed.), Wiley, New York, pp. 37–68.

    Google Scholar 

  3. DeLuca, M. and McElroy, W. D. (1978) Purification and properties of firefly luciferase, inMethods in Enzymologyvol. 57 (DeLuca, M. A., ed.), Academic, New York, pp. 3–15.

    Google Scholar 

  4. McElroy, W. D. and DeLuca, M. (1985) Firefly luminescence, inChemi-and Bioluminescence(Burr, J. G., ed.), Marcel Dekker, New York, pp. 387–399.

    Google Scholar 

  5. Denburg, J. L., Lee, R. T., and McElroy, W. D. (1969) Substrate-binding properties of firefly luciferase. I. Luciferin-binding site.Arch. Biochem. Biophys.134, 381–394.

    Article  PubMed  CAS  Google Scholar 

  6. Lemasters, J. L. and Hackenbrook, C. R. (1977) Kinetics of product inhibition during firefly luciferase luminescence.Biochemistry16,445–447.

    Article  PubMed  CAS  Google Scholar 

  7. Green, A. A. and McElroy, W. D. (1956) Crystalline firefly luciferase.Biochim. Biophys. Acta20, 170–176.

    Article  PubMed  CAS  Google Scholar 

  8. White, E. H., McCapra, F., Field, G. F., and McElroy, W. D. (1961) The structure and synthesis of firefly luciferin.J. Am. Chem. Soc.83, 2402,2403.

    Google Scholar 

  9. Leach, R. L. and Webster, J. J. (1986) Commercially available firefly luciferase reagents, inMethods in Enzymologyvol. 133 (DeLuca, M. A. and McElroy, W. D., eds.), Academic, New York, pp. 51–70.

    Google Scholar 

  10. Hastings, J. W., Baldwin, O. T., and Nicoli, M. Z. (1978) Bacterial luciferase: Assay, purification, and properties, inMethods in Enzymologyvol. 57, (DeLuca, M. A., ed.), Academic, New York, pp. 135–152.

    Google Scholar 

  11. Nealson, K. H. (1978) Isolation, identification, and manipulation of luminous bacteria, inMethods in Enzymologyvol. 57 (DeLuca, M. A., ed.), Academic, New York, pp. 153–166.

    Google Scholar 

  12. Baumann, P., Fumiss, A. L., and Lee, J. V. (1984) Genus I.Vibrio. in Bergey’ s Manual of Systematic Bacteriologyvol. 1 (Krieg, N. R., ed.), William & Willkins, Baltimore, pp. 518–538.

    Google Scholar 

  13. Baumann, P. and Baumann, L. (1984) Genus H.Photobacteriwn. in Bergey’ s Manual of Systematic Bacteriologyvol. 1 (Krieg, N. R., ed.), Williams & Willkins, Baltimore, pp. 539–545.

    Google Scholar 

  14. Puget, K. and Michelson, A. M. (1972) Studies in bioluminescence. VII. Bacterial NADH: Flavin mononucleotide oxidoreductase.Biochimie54, 1197–1204.

    Article  PubMed  CAS  Google Scholar 

  15. Duane, W. and Hastings, J. W. (1975) Flavin mononucleotide reductase in luminous bacteria.Mol. Cell. Biochem. 6, 53–64.

    Article  PubMed  CAS  Google Scholar 

  16. Gerlo, E. and Chartier, J. (1975) Identification of NADH-specific and NADPH-specific FMN reductases inBeneckea harveyi. Eur. J. Biochem.57,461–467.

    Article  CAS  Google Scholar 

  17. Erlanger, B. F., Isambert, M. F., and Michelson, A.M. (1970) Insoluble bacterial luciferases: A new approach to some problems in bioluminescence.Biochem. Biophys. Res. Commun.40,70–76.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, Y., Jablonski I., and DeLuca M. (1977) Immobilization of firefly luciferase on glass rods. Properties of immobilized enzyme.Anal. Biochem.80, 496–501.

    Article  PubMed  CAS  Google Scholar 

  19. .Wienhausen, G. K., Kricka, L. J., Hinkley, J. E., and DeLuca, M. (1982) Properties of bacterial luciferase/NADH:FMN oxidoreductase and firefly luciferase immobilized onto Sepharose.Applied Biochem. Biotechnol.7,463–473.

    Article  CAS  Google Scholar 

  20. Kricka, L. J., Wienhausen, G. K., Hinkley, J. E., and DeLuca, M. (1983) Automated bioluminescent assays for NADH, glucose-6-phosphate, primary bile acids and ATP.Anal. Biochem.129, 392–397.

    Article  PubMed  CAS  Google Scholar 

  21. Kricka, L. J. and DeLuca, M. (1982) Effect of solvents on the catalytic activity of firefly luciferase.Arch. Biochem. Biophys.217, 674–681.

    Article  PubMed  CAS  Google Scholar 

  22. Brovko, L. Yu., Ugarova, N. N., Vasileva, T. E., Dombrovski, V. A., and Berezin, I.V. (1978) Use of immobilized firefly luciferase for quantitative determination of ATP and enzymes that synthesize and destroy ATP.Biochemistry USSR43, 633–639.

    Google Scholar 

  23. Ugarova, N. N., Brovko, L. Yu., and Berezin, I. V. (1980) Immobilized firefly luciferase and its use in analysis.Anal. Leu.13, 881–892.

    Article  CAS  Google Scholar 

  24. Brovko, L. Yu and Ugarova N. N. (1980) Kinetics and mechanism of the inactivation and reactivation of immobilized luciferase of firefliesLuciola mingrelicaand the role of sulfhydryl groups in these processes.Biochemistry USSR45, 607–613.

    Google Scholar 

  25. Brovko, L. Yu., Kost, N. V., and Ugarova, N. N. (1980) Immobilized luciferase from the firefliesLuciola min grelica.Change in the pH dependence of the catalytic activity and stability of the enzyme after immobilization on various polysaccharide carriers.Biochemistry USSR45,1199–1204.

    Google Scholar 

  26. Ugarova, N. N., Brovko, L. Y., and Kost N. V. (1982) Immobilization of luciferase from the fireflyLuciola mingrelica.Catalytic properties and stability of the immobilized enzyme.Enzyme Microbial Technol.4, 224–228.

    Article  CAS  Google Scholar 

  27. Ugarova, N. N., Brovko, L. Y., and Beliaieva, E. I. (1983) Immobilization of luciferase from the fireflyLuciola mingrelica:Catalytic properties and thermostability of the enzyme immobilized on cellulose films.Enzyme Microbial Technol.5, 60–64.

    Article  CAS  Google Scholar 

  28. Ivanova, L. V., Brovko, L. Yu., Shekhovtsova, T. N., Ugarova, N. N., and Dolmanova, I. F. (1986) Bioluminescent method of determining the creatine phosphokinase activity using immobilized firefly luciferase.J. Anal. Chem. USSR41, 593–599.

    Google Scholar 

  29. Ugarova, N. N., Brovko, L. Yu., Ivanova, L. V., Shekhovtsova, T. N., and Dolmanova, I. F. (1986) Bioluminescent assay of creatine kinase activity using immobilized firefly extract.Anal. Biochem.158, 1–5.

    Article  PubMed  CAS  Google Scholar 

  30. Carrea, G., Boyara, R., Mazzola, G., Girotti, S., Roda, A., and Ghini,S. (1986) Bioluminescent continuous-flow assay of adenosine 5’-triphosphate using firefly luciferase immobilized on nylon tubes.Anal. Chem.58, 331–333.

    Article  PubMed  CAS  Google Scholar 

  31. Carrea, G., Bovara, R., Girotti, S., Ferri, E., Ghini, S., and Roda, A. (1989) Continuous-flow bioluminescent determination of ATP in platelets using firefly luciferase immobilized on epoxy methacrylate.J. Biolum Chemilum3, 7–11.

    Article  CAS  Google Scholar 

  32. Worsfold, P. J. and Nabi, A. (1986) Bioluminescent assays with immobilized firefly luciferase based on flow injection analysis.Anal. Chim. Acta179, 307–313.

    Article  CAS  Google Scholar 

  33. Blum, L. J., Coulet, P. R., and Gautheron, D. C. (1985) Collagen strip with immobilized luciferase for ATP bioluminescent determination.Biotechnol. Bioeng.27, 232–237.

    Article  PubMed  CAS  Google Scholar 

  34. Travis, J. and McElroy, W. D. (1966) Isolation and sequence of an essential sulfhydryl peptide at the active site of firefly luciferase.Biochemistry5, 2170–2176.

    Article  PubMed  CAS  Google Scholar 

  35. Coulet, P. R., Julliard, J. H., and Gautheron, D. C. (1974) A mild method of general use for covalent coupling of enzymes to chemically activated collagen films.Biotechnol. Bioeng. 16,1055–1068.

    Article  PubMed  CAS  Google Scholar 

  36. Blum, L. J. and Coulet, P. R. (1986) Atypical kinetics of immobilized firefly luciferase.Biotechnol. Bioeng. 28, 1154–1158.

    Article  PubMed  CAS  Google Scholar 

  37. Jablonski, E. and DeLuca, M. (1976) Immobilization of bacterial luciferase and FMN reductase on glass rods.Proc. Natl. Acad. Sci. USA73, 3848–3851.

    Article  PubMed  CAS  Google Scholar 

  38. Haggerty, C., Jablonski, E., Stay, L., and DeLuca, M. (1978) Continuous monitoring of reactions that produce NADH and NADPH using immobilized luciferase and oxidoreductases fromBeneckea harveyi. Anal. Biochem. 88,162–173.

    Article  CAS  Google Scholar 

  39. Jablonski, E. and DeLuca, M. (1979) Properties and uses of immobilized light-emitting enzyme systems fromBeneckea harveyi. Clin. Chem. 25, 1622–1627.

    CAS  Google Scholar 

  40. Ford, J. and DeLuca, M. (1981) A new assay for picomole levels of androsterone and testosterone using co-immobilized luciferase, oxidoreductase and steroid dehydrogenase.Anal. Biochem. 110, 43–48.

    Article  PubMed  CAS  Google Scholar 

  41. Wienhausen, G. and DeLuca, M. (1982) Bioluminescent assays of picomole levels of various metabolites using immobilized enzymes.Anal. Biochem.127, 380–388.

    Article  PubMed  CAS  Google Scholar 

  42. Roda, A., Kricka, L. J., DeLuca, M., and Hofmann, A. F. (1982) Bioluminescence measurement of primary bile acids using immobilized 7a-hydroxysteroid dehydrogenase: Application to serum bile acids.J. Lipid Res. 23, 1354–1361.

    PubMed  CAS  Google Scholar 

  43. Schoelmerich, J., Hinkley, J. E., MacDonald, I. A., Hofmann, A. F., and DeLuca, M. (1983) A bioluminescent assay for 12-a-hydroxy bile acids using immobilized enzymes.Anal. Biochem. 133, 244–250.

    Article  PubMed  CAS  Google Scholar 

  44. Schoelmerich, J., van Berge Henegouwen, G. P., Hofmann, A. F., and DeLuca, M. (1984) A bioluminescence assay for total 3a-hydroxy bile acids in serum using immobilized enzymes.Clin. Chim. Acta 137, 21–32.

    Article  PubMed  CAS  Google Scholar 

  45. Rossi, S. S., Clayton, L. M., and Hofmann, A. F. (1986) Determination of chenodiol bioequivalence using an immobilized multi-enzyme bioluminescence technique.J. P harm. Sci. 75, 288–290.

    CAS  Google Scholar 

  46. Rodriguez, O. and Guilbault, G. G. (1981) Immobilized bacterial luciferase for microscale analysis of creatine kinase activity.Enzyme Microb. Technol. 369–72.

    Article  CAS  Google Scholar 

  47. Ugarova, N. N., Lebedeva, O. V., and Frumkina, I. G. (1988) Bioluminescent microassay of various metabolites using bacterial luciferase co-immobilized with multienzyme systems.Anal. Biochem.173, 221–227.

    Article  PubMed  CAS  Google Scholar 

  48. Blum, L. J. and Coulet, P. R. (1984) Bioluminescent determination of reduced nicotinamide adenine dinucleotide with immobilized bacterial lucif-erase and flavin mononucleotide oxidoreductase on collagen film.Anal. Chim. Acta161, 355–358.

    Article  CAS  Google Scholar 

  49. Kurkijärvi, K., Raunio, R., and Korpela, T. (1982) Packed-bed reactor of immobilized bacterial bioluminescence enzymes: A potential high-sensitivity detector for automated analyzers.Anal. Biochem. 125, 415–419.

    Article  PubMed  Google Scholar 

  50. Vellom, D. C. and Kricka, L. J. (1986) Continuous-flow bioluminescent assays employing Sepharose-immobilized enzymes, inMethods in Enzymologyvol. 133 (DeLuca, M. A. and McElroy, W. D., eds.), Academic, New York, pp. 229–237.

    Google Scholar 

  51. Roda, A., Girotti, S., Ghini, S., Grigolo, B., Carrea, G., and Bovara, R. (1984) Continuous-flow determination of primary bile acids, by bioluminescence, with use of nylon-immobilized bacterial enzymes.Clin. Chem.30,206–210.

    PubMed  CAS  Google Scholar 

  52. Girotti, S., Roda, A., Ghini, S., Grigolo, B., Carrea, G., and Boyara, R. (1984) Continuous flow analyses of NADH using bacterial bioluminescent enzymes immobilized on nylon.Anal. Leu.17, 1–12.

    CAS  Google Scholar 

  53. Roda, A., Girotti, S., and Carrea, G. (1986) Flow systems utilizing nylon-immobilized enzymes, inMethods in Enzymologyvol. 133 (DeLuca, M. A. and McElroy, W. D., eds.), Academic, New York, pp. 238–248.

    Google Scholar 

  54. Girotti, S., Roda, A., Piazzi, S., Carrea, G., Piacentini, A. L., Angelloti, M. A., Bovara, R., and Ghini, S. (1987) Bioluminescent flow sensors: L-Alanine determination in serum and urine.Anal. Leu.20, 1315–1330.

    Article  CAS  Google Scholar 

  55. Girotti, S., Roda, A., Angelloti, M. A., Ghini, S., Carrea, G., Bovara, R., Piazzi, S., and Merighi, R. (1988) Bioluminescence flow system for determination of branched-chain L-amino acids in serum and urine.Anal. Chim. Acta205,229–237.

    Article  CAS  Google Scholar 

  56. Girotti, S., Bassoli, C., Cascione, M. L., Ghini, S., Carrea, G., Bovara, R., Roda, A., Motta, R., and Petilino, R. (1989) Bioluminescent flow sensors: L-Lactate dehydrogenase activity determination in serum.J. Biolum. Chemilwn. 341–45.

    Article  CAS  Google Scholar 

  57. Nabi, A. and Worsfold, P. J. (1986) Bioluminescence assays with immobilised bacterial luciferase using flow injection analysis.Analyst 111, 1321–1324.

    CAS  Google Scholar 

  58. Nabi, A. and Worsfold, P. J. (1987) Flow injection procedures for the determination of ethanol and alcohol dehydrogenase using co-immobilised bacterial luciferase and oxidoreductase.Analyst112, 531–533.

    Article  PubMed  CAS  Google Scholar 

  59. Roswell, D. H. and White, E. H. (1978) The chemiluminescence of luminol and related hydrazides, inMethods in Enzymologyvol. 57 (DeLuca, M. A., ed.), Academic, New York, pp. 409–423.

    Google Scholar 

  60. White, E. H., Zafiriou, O., Kägi, H. H., and Hill, J. H. M. (1964) Chemiluminescence of luminol: the chemical reaction.J. Am. Chem. Soc. 86, 940–941.

    Article  CAS  Google Scholar 

  61. White, E. H. and Bursey, M. M. (1964) Chemiluminescence of luminol and related hydrazides. The light emission step.J. Am. Chem. Soc. 86, 941,942.

    Google Scholar 

  62. Cormier, M. J. and Prichard, P. M. (1968) An investigation of the luminescent peroxidation of luminol by stopped flow techniques.J. Biol. Chem. 243, 4706–4714.

    PubMed  CAS  Google Scholar 

  63. Maskiewicz, R., Sogah, D., and Bruice, T.C. (1979) Chemiluminescent reaction of lucigenin. I. Reactions of lucigenin with H2O2.J. Am. Chem. Soc. 101, 5347–5354.

    Article  CAS  Google Scholar 

  64. Isacsson, U. and Wettermark, G. (1974) Chemiluminescence in analytical chemistry.Anal. Chim. Acta68, 339–362.

    Article  CAS  Google Scholar 

  65. Totter, J. R. (1975) Light production in alkaline mixtures of reducing agents and dimethylbiacridylium nitrate.Photochem. Photobiol.22, 203–211.

    Article  PubMed  CAS  Google Scholar 

  66. Mohan, A. G. (1985) Peroxyoxalate chemiluminescence, inChemi-and Bioluminescence(Burr, J. G., ed.), Marcel Dekker, New York, pp. 245–258.

    Google Scholar 

  67. Imai, K., Miyaguchi, K., and Honda, K. (1985) High-performance liquid chromatography-chemiluminescence reaction detection system of fluorescent compounds using TCPO and hydrogen peroxide, inBioluminescence and Chemiluminescence: Instruments and Applicationsvol. 2 (Van Dyke, K., ed.), CRC, Boca Raton, pp. 65–75.

    Google Scholar 

  68. Bostick, D. T. and Hercules, D. M. (1975) Quantitative determination of blood glucose using enzyme induced chemiluminescence of luminol.Anal. Chem. 47, 447–452.

    Article  PubMed  CAS  Google Scholar 

  69. Tabata, M., Fukunaga, C., Ohyabu, M., and Murachi, T. (1984) Highly sensitive flow injection analysis of glucose and uric acid in serum using an immobilized enzyme column and chemiluminescence.J. Appt. Biochem. 6, 251–258.

    CAS  Google Scholar 

  70. Petersson, B. A., Hansen, E. H., and Ruzicka, J. (1986) Enzymatic assay by flow-injection analysis with detection by chemiluminescence: Determination of glucose, creatinine, free cholesterol and lactic acid using an integrated FIA microconduit.Anal. Leu. 19, 649–665.

    CAS  Google Scholar 

  71. Blum, L. J., Plaza, J. M., and Coulet, P. R. (1987) Chemiluminescent analyte microdetection based on the luminol H2O2reaction using peroxidase immobilized on new synthetic membranes.Anal. Lett.20, 317–326.

    Article  CAS  Google Scholar 

  72. Nau, V. and Nieman, T. A. (1979) Application of microporous membranes to chemiluminescence analysis.Anal. Chem. 51, 424–428.

    Article  CAS  Google Scholar 

  73. Pilosof, D. and Nieman, T. A. (1980) Localization of light emission in micro-porous membrane chemiluminescence cells. Anal. Chem. 52, 662–666.

    CAS  Google Scholar 

  74. Pilosof, D. and Nieman, T. A. (1982) Microporous membrane flow-cell with nonimmobilized enzyme for chemiluminescent determination of glucose.Anal. Chem. 54,1698–1701.

    Article  PubMed  CAS  Google Scholar 

  75. Malavolti, N. L., Pilosof, D., and Nieman, T. A. (1985) Determination of cholesterol with a microporous membrane chemiluminescence cell with cholesterol oxidase in solution.Anal. Chim. Acta 170, 199–207.

    Article  CAS  Google Scholar 

  76. Williams D. C. III, Huff, G. F., and Seitz, W. R. (1976) Evaluation of peroxyoxalate chemiluminescence for determination of enzyme generated peroxide.Anal. Chem. 48, 1003–1006.

    Article  PubMed  CAS  Google Scholar 

  77. Rigin, V. I. (1981) Determination of formaldehyde and formic acid in natural water by applying an immobilized enzyme and a chemiluminescence finish.J. Anal. Chem. USSR36, 1111–1115.

    Google Scholar 

  78. Rigin, V. I. (1982) Chemiluminescence determination of microamounts of oxalate and urate by means of flow-through columns containing immobilized enzymes.J. Anal. Chem. USSR 371302–1306.

    Google Scholar 

  79. Rigin, V. I. (1983) Determination of microamounts of L-amino acids by enzymatic oxidation reaction.J. Anal. Chem. USSR 38,1328–1330.

    Google Scholar 

  80. Honda, K., Miyaguchi, K., Nishino, H., Tanaka, H., Yao, T., and Imai, K. (1986) High-performance liquid chromatography followed by peroxyoxalate chemiluminescence detection of acetylcholine and choline utilizing immobilized enzymes.Anal. Biochem. 15350–53.

    Article  PubMed  CAS  Google Scholar 

  81. Lippman, R. D. (1980) Sensitive solid-phase chemiluminescence microassay of thiols.Anal. Chim. Acta 116, 181–184.

    Article  CAS  Google Scholar 

  82. Branchini, B. R., Salituro, F. G., Hermes, J. D., and Post, N. J. (1980) Highly sensitive assays for proteinases using immobilized luminogenic substrates.Biochem. Biophys. Res. Commun. 97, 334–339.

    Article  PubMed  CAS  Google Scholar 

  83. Hool, K. and Nieman, T. A. (1987) Chemiluminescence analysis in flowing streams with luminol immobilized on silica and controlled-pore glass.Anal. Chem. 59, 869–872.

    Article  CAS  Google Scholar 

  84. Freeman, T. M. and Seitz, W. R. (1978) Chemiluminescence fiber optic probe for hydrogen peroxide based on the luminol reaction.Anal. Chem. 50,12421246.

    Google Scholar 

  85. Abdel-Latif, M. S. and Guilbault, G. G. (1988) Fiber-optic sensor for the determination of glucose using micellar enhanced chemiluminescence of the peroxyoxalate reaction.Anal. Chem. 602671–2674.

    Article  PubMed  CAS  Google Scholar 

  86. Blum, L. J., Gautier, S. M., and Coulet, P. R. (1988) Luminescence fiber-optic biosensor.Anal. Leu. 21, 717–726.

    Article  Google Scholar 

  87. Blum, L. J., Gautier, S. M., and Coulet, P. R. (1989) Design of luminescence photobiosensors.J. Biolum. Chemilum.4, 543–550.

    Article  CAS  Google Scholar 

  88. Gautier, S. M., Blum, L. J., and Coulet, P. R. (1989) Fibre-optic sensor with co-immobilised bacterial bioluminescence enzymes.Biosensors 4181–194.

    Article  PubMed  CAS  Google Scholar 

  89. Blum, L. J., Gautier, S. M., and Coulet, P. R. (1989) Highly stable bioluminescence-based fiber-optic sensor using immobilized enzymes fromVibrio harveyi. Anal. Leu. 22,2211–2222.

    Article  CAS  Google Scholar 

  90. Gautier, S. M., Blum, L. J., and Coulet, P. R. (1990) Fibre-optic biosensor based on luminescence and immobilized enzymes: Microdetermination of sorbitol, ethanol and oxaloacetate.J. Biolum. Chemilum.5, 57–63.

    Article  CAS  Google Scholar 

  91. Gautier, S. M., Blum, L. J., and Coulet, P. R. (1990) Alternate determination of ATP and NADH with a single bioluminescence-based fiber-optic sensor, inSensors and ActuatorsB1,580–584.

    CAS  Google Scholar 

  92. Blum, L. J., Gautier, S. M., and Coulet, P. R. (1989) Continuous flow bioluminescent assay of NADH using a fiber-optic sensor.Anal. Chim. Acta226, 331–336.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coulet, P.R., Blum, L.J. (1991). Luminescence in Biosensor Design. In: Wise, D.L., Wingard, L.B. (eds) Biosensors with Fiberoptics. Contemporary Instrumentation and Analysis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0483-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0483-1_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6782-9

  • Online ISBN: 978-1-4612-0483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics