Skip to main content

Immunoassay Kinetics at Continuous Surfaces

  • Chapter
Biosensors with Fiberoptics

Part of the book series: Contemporary Instrumentation and Analysis ((CIA))

Abstract

The key to immunoassay success is analytical sensitivity and specificity, which in turn lead to clinical utility. The immunoassay reagent, the antibody, has the characteristic of being able to bind tightly and relatively specifically to the invading agent (the antigen) and thereafter initiate a series of events terminating in the biological neutralization of the invading agent. It is this binding event that gives immunoassays their importance in clinical medicine. The reaction between the selected antibody and its target antigen is generally highly specific, rapid, and effectively irreversible. Thus, using antibodies as reagents in a testing system should allow the specific detection of relatively small amounts of antigen from mixtures of generically similar materials. For example, thyroid stimulating hormone can be determined at 10-12mol/L in the presence of greater than approx 108-fold other proteins that are essentially physically identical(1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lawson, N., Mike, N., Wilson, R., and Pandov, H. (1986) Assessment of time-resolved fluoroimmunoassay for thyrotropin in routine clinical practice.Clin. Chem.32, 684–686.

    PubMed  CAS  Google Scholar 

  2. Dandliker, W. B., Hsu, M.-L., and Vanderlaan, W. P. (1980) Fluorescence polarization immuno/receptor assays, inImmunoassays Clinical Laboratory Techniques for the 1980’s (Nakamura, R. M., Dito, W. R., and Tucker, E. S., eds.), Alan R. Liss, New York, pp. 65–88.

    Google Scholar 

  3. Henderson, D. R., Friedman, S. B., Harris, J. O., Manning, W. B., and Zoccoli, A. (1986) CEDIA, a new homogeneous immunoassay system.Clin. Chem.32,1637–1641.

    PubMed  CAS  Google Scholar 

  4. Pecht, I. and Lancet, D. (1977) Kinetics of antibody-hapten interactions.Mol. Biol. Biochem. Biophys.24, 306–338.

    Article  PubMed  CAS  Google Scholar 

  5. Axén, R. E., Kaj, G. L., and Björkman, R. Method, porous matrix and device for analytical biospecific affinity reactions. International Patent Application PCT/SE84/00033.

    Google Scholar 

  6. Crank, J. (1975)Mathematics of Diffusion2d Ed. Clarendon, Oxford, UK.

    Google Scholar 

  7. Mason, D. W. and Williams, A. F. (1980) The kinetics of antibody binding to membrane antigens in solution and at the cell surface.Biochem. J.187, 1 20.

    Google Scholar 

  8. Stenberg, M., Stiblert, L., and Nygren, H. (1986) External diffusion in solid-phase immunoassays.J. Theor. Biol.120, 129–140.

    Article  PubMed  CAS  Google Scholar 

  9. Stenberg, M. and Nygren, H. (1985) A diffusion limited reaction theory for a solid-phase immunoassay.J. Theor. Biol.113, 589–597.

    Article  PubMed  CAS  Google Scholar 

  10. Schaaf, P. and Dejardin, P. (1987) Coupling between interfacial protein adsorption and bulk diffusion. A numerical study.Coll. Surf.24, 239.

    Article  CAS  Google Scholar 

  11. Bard, A. J. and Faulkner, L. R. (1980)Electrochemical MethodsWiley, New York.

    Google Scholar 

  12. Jeme, N. K., Henry, C., Nordin, A. A., Fuji, H., Koros, A. M. C., and Letkovits, I. (1974) Plaque forming cells: Methodology and theory.Transplant. Rev.18, 130–191.

    Google Scholar 

  13. Wank, S. A., DeLisi, C., and Metzger, H. (1983) Analysis of the rate-limiting step in a ligand-cell receptor interaction: The immunoglobulin E system.Biochemistry22, 954–959.

    CAS  Google Scholar 

  14. Carlslaw, H. S. and Jaeger, J. C. (1959)Conduction of Heat in Solids2d Ed., Clarendon, Oxford, UK.

    Google Scholar 

  15. Feldberg, S. W. (1969) Digital simulation: A general method for solving electrochemical diffusion-kinetic problems.Electroanal. Chem.3, 199 296.

    Google Scholar 

  16. Tran-Minh, C. and Broun, G. (1975) Construction and study of electrodes using cross-linked enzymes.Anal. Chem.47, 1359–1364.

    Article  PubMed  CAS  Google Scholar 

  17. Mell, L. D. and Maloy, J. T. (1975) A model for the amperometric enzyme electrode obtained through digital simulation and applied to the immobilized glucose oxidase system.Anal. Chem.47, 229–307.

    Article  Google Scholar 

  18. Brady, J. E. and Carr, P. W. (1980) Theoretical evaluation of the steady-state response of potentiometric electrodes.Anal. Chem.52, 977–980.

    Article  CAS  Google Scholar 

  19. Caras, S. D., Janata, J., Saupe, D., and Scmitt, K. (1985) pH-based enzyme potentiometric sensors.Anal. Chem.57,1917–1920.

    Article  PubMed  CAS  Google Scholar 

  20. Thompson, M., Dhaliwal, G. K., Anthur, C. L., and Calabrese, G. S. (1987) The potential of the bulk acoustic wave device as a liquid-phase immunosensor.IEEE Trans. Ultrasonics Ferroelectrics and Frequency Control 34,127–135.

    Article  CAS  Google Scholar 

  21. Reinmuth, W. H. (1961) Diffusion to a plane with Langmuirian adsorption.J. Phys. Chem.65, 473–476.

    Article  CAS  Google Scholar 

  22. Carr, P. W. and Bowers, L. D. (1980)Immobilized Enzymes in Analytical and Clinical ChemistryWiley, New York.

    Google Scholar 

  23. Watkins, R. W. and Robertson, C. R. (1917) A total internal-reflection technique for the examination of protein adsorption.J. Biomed. Mater. Res.11, 915–938.

    Article  Google Scholar 

  24. Lok, B. K. (1981) PhD thesis, Protein adsorption onto cross-linked polydimethysiloxane using total internal reflection fluorescence. Stanford University, Stanford, CA.

    Google Scholar 

  25. DeLisi, C. and Metzger, H. (1976) Some physical chemical aspects of receptor-ligand interactions.Immunol. Commun. 5/5417–436.

    Google Scholar 

  26. Eigen, M. (1974) Diffusion control in biochemical reactions, inQuantum Statistical Mechanics in the Natural Sciences(Mintz, S.L. and Wiedermayer, S. M., eds.), Plenum, New York.

    Google Scholar 

  27. Andrade, J. D. and Hlady, V. (1986) Protein adsorption and materials biocompatability: A tutorial review and suggested hypotheses.Adv. Polymer Sci.70, 1–63.

    Article  Google Scholar 

  28. Sutherland, R. M. and Dähne, C. (1987) IRS devices for optical immunoassays, inBiosensors: Fundamentals and Applications(Turner, A. P. F., Karube, I., and Wilson, G. S., eds.), Oxford University Press, Oxford, UK.

    Google Scholar 

  29. Sutherland, R. M., Dähne, C., Bregnard, A., Hybl, E., and Maystre, J.-L. (1987) Evanescent wave immunoassays, inComplementary Immunoassays(Collins, W. P., ed.), Wiley, Chichester.

    Google Scholar 

  30. Kronick, M. N. and Little, W. A. (1975) A new immunoassay based on fluorescence excitation by internal reflection spectroscopy.J. Immunol. Meth.8, 235–242.

    Article  CAS  Google Scholar 

  31. Andrade, J. D. and Van Wagenen, R. (1983) Process for conducting fluorescence immunoassays without added labels and employing attenuated internal reflection. US Patent 4,368,047.

    Google Scholar 

  32. Sutherland, R. M., Dähne, C., Place, J. F., and Ringrose, A. R. (1984) Optical detection of antibody-antigen reactions at a glass-liquid interface.Clin. Chem.30, 1533–1538.

    PubMed  CAS  Google Scholar 

  33. Sutherland, R. M., Dähne, C., Place, J. F., and Ringrose, A. R. (1984) Immunoassays at a quartz-liquid interface: Theory, instrumentation and preliminary application to the fluorescent immunoassay of human immunoglobulin G.J. Immunol. Meth.74, 253–265.

    Article  CAS  Google Scholar 

  34. Hirschfeld, T. E. (1984) Fluorescent immunoassay employing optical fiber in capillary tube. US Patent 4,447,546.

    Google Scholar 

  35. Sutherland, R. M., Dähne, C., Slovacek, R., and Bluestein, B. (1987) Interface immunoassays using the evanescent wavein Non-isotopic Immunoassays(Ngo, T. T., ed.), Plenum, New York.

    Google Scholar 

  36. Badley, R. A., Drake, R. A. L., Shanks, I. A., Smith, A. M., and Stephenson, P. R. (1986) Optical biosensors for immunoassays—the fluorescence capillary fill device.Proc. R. Soc.

    Google Scholar 

  37. Leidberg, B., Nylander, C., and Lundström, I. (1983) Surface plasmon resonance for gas detection and biosensing.Sens. Act.4, 299–304.

    Article  Google Scholar 

  38. Layton, D. G., Pettigrew, R. M., Smith, A. M., Petty-Saphon, S., and Fisher, J. H. (1984) Qualitative and quantitative assays of biological samples etc. by using thin film coating on plate with optical observation of changes. EP Patent 0112721.

    Google Scholar 

  39. Giaever, I. (1976) Visual detection of CEA antigen on surfaces.J. Immunol.116, 766–771.

    PubMed  CAS  Google Scholar 

  40. Rothen, A. (1974) Immunological reactions between films of antigen and antibody molecules.J. Biol. Chem.168, 75–97.

    Google Scholar 

  41. Hirschfeld, T. (1971) Total reflection fluorescence spectroscopy. US Patent 3,604,937.

    Google Scholar 

  42. Raether, H. (1977) Surface plasmon oscillations and their applications, inPhysics of Thin Films Advances in Research and Development (Haas, G. and Farnecombe, M. H., eds.), Academic, New York, pp. 145–261.

    Google Scholar 

  43. Harrick, N. J. (1967)Internal Reflection SpectroscopyInterscience, New York.

    Google Scholar 

  44. Burghardt, T. P. and Axelrod, D. (1981) Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery and correlation spectroscopy.Biophys. J. 33435–454.

    Article  PubMed  Google Scholar 

  45. Carniglia, C. K., Mandel, L., and Drexhage, H. (1972) Absorption and emission of evanescent photons.J. Opt. Soc. Amer.62, 479–486.

    Article  CAS  Google Scholar 

  46. Lee, E. H., Benner, R. E., Fenn, J. B., and Chang, R. K. (1979) Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent waveexcitation. App. Opt.18, 862–870.

    Article  CAS  Google Scholar 

  47. Ekins, R. P. (1985) Current concepts and future developments, inAlternative Immunoassays(Collins, W. P., ed.), Wiley, Chichester, UK, pp. 219–237.

    Google Scholar 

  48. Abelèls, F. (1972)Optical Properties of SolidsNorth-Holland, Amsterdam, p. 67.

    Google Scholar 

  49. Agranovic, V. M. (1982)Surface PolaritonsNorth-Holland, Amsterdam, pp. 243–251.

    Google Scholar 

  50. Raether, H. (1980) Excitation of plasmons and interband transitions by electrons.Springer Tracts Mod. Phys.88, pp. 1–196.

    Google Scholar 

  51. Flanagan, M. T. and Pantell, R. M. (1984) Surface plasmon resonance and immunosensors.Electr. Leu.20, 968–970.

    Article  Google Scholar 

  52. North, J. B., Petty-Saphon, S., and Sawyers, C. G. (1986) Assay of biological, biochemical and chemical species by fluorescent measurement on a surface having a pre-formed relief profile. WO Patent8601901.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Place, J.F., Sutherland, R.M., Riley, A., Mangan, C. (1991). Immunoassay Kinetics at Continuous Surfaces. In: Wise, D.L., Wingard, L.B. (eds) Biosensors with Fiberoptics. Contemporary Instrumentation and Analysis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0483-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0483-1_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6782-9

  • Online ISBN: 978-1-4612-0483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics