Skip to main content

Instrumentation for Cylindrical Waveguide Evanescent Fluorosensors

  • Chapter
Biosensors with Fiberoptics

Abstract

This chapter contains a description of the physical principles of a cylindrical evanescent-wave fluorosensor and a discussion of some practical considerations for use of the sensor. Evanescent fluorosensors are based on the principle of total reflection fluorescence, first described by Hirschfeld (1), wherein fluorescence is excited by the evanescent wave on or near the boundary of a totally reflecting element, such as a prism or waveguide. Early investigators(24)used evanescent excitation, but collected fluorescent emission in free propagation. Block and Hirschfeld(57)first proposed evanescent excitation and evanescent collection (i.e., collection of the fluorescence that is tunneled back into trapped modes of the waveguide) using an optical fiber or rod as the sensing element. Subsequently, Sutherland et al. in 1984(4-8)at Battelle and Andrade et al. in 1985 (9)at the University of Utah described similar research approaches. The topic of evanescent-wave theory is reviewed by Harrick (10)(good introduction) and supplemented by Carniglia, Mandel, and Drexhage’s treatment(11)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirschfeld, T. B. (1965) Total reflection fluorescence.J. Can. Spectrosc.126.

    Google Scholar 

  2. Kronick, M. N. and Little, W. A. (1973) A new fluorescent immunoassay.Bull. Am. Phys. Soc. 18782.

    Google Scholar 

  3. Kronick, M. N. and Little, W. A. (1975) A new immunoassay based on fluorescence excitation by internal reflection spectroscopy.J. Immunol. Methods 8235.

    Article  PubMed  CAS  Google Scholar 

  4. Sutherland, R. M., Dahne, C., Slovacek, R., and Bluestein, B. (1987) Interface immunoassays using the evanescent wavein Nonisotopic Immunoassays(Ngo, T. T., ed.) Plenum, New York.

    Google Scholar 

  5. Hirschfeld, T. B. and Block, M. J. (1986) Apparatus including optical fiber for fluorescence immunoassay. US Patent 4,582,809.

    Google Scholar 

  6. Hirschfeld, T. B. and Block, M. J. (1984) Assay apparatus and method. US Patent 4,558,014.

    Google Scholar 

  7. Hirschfeld, T. B. and Block, M. J. (1984) Fluorescent immunoassay employing optical fiber in capillary tube. US Patent 4,447,546.

    Google Scholar 

  8. Sutherland, R. M. and Dahne, C. (1984) Optical detection of antibody-antigen reactions at a glass liquid interface.Clin. Chem.30, 1533.

    PubMed  CAS  Google Scholar 

  9. Andrade, J. D., Van Wagenan, R. A., Gregonis, D. E., Newby, K., and Lin, J. N. (1985) Remote fiber-optic biosensors based on evanescent-excited fluoroimmunoassay: Concept and progress.IEEE Trans. Electron. Devices32,1175.

    Article  Google Scholar 

  10. Harrick, N. J. (1967)Internal Reflection Spectroscopy(Interscience, New York) Chap. 2.

    Google Scholar 

  11. Carniglia, C. K., Mandel, L., and Drexhage, H. (1972) Absorption and emission of evanescent photons.J. Opt. Soc.Am. 62, 479.

    CAS  Google Scholar 

  12. Lee, E. H., Benner, R. E., Fenn, J. B., and Chang, R. K. (1976) Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation.Appl. Opt.18862

    Article  Google Scholar 

  13. Holland, W. R. and Hall, D. G. (1985) Waveguide mode enhancement of molecular fluorescenceOpt. Lett.10414

    Article  PubMed  CAS  Google Scholar 

  14. Holland, W. R. and Hall, D. G. (1987) Method and system for the enhancement of fluorescence. US Patent 4,649,280

    Google Scholar 

  15. Boyd, R. W. (1983)Radiometry and the Detection of Optical Radiation(Wiley, New York) Chap. 5.

    Google Scholar 

  16. Glass, T., Lackie, S., and Hirschfeld, T. (1987) Effect of numerical aperture on signal level in cylindrical waveguide evanescent fluorosensors.Appl. Opt.26, 2181.

    Article  PubMed  CAS  Google Scholar 

  17. International Patent WO 83/01112 (1983).

    Google Scholar 

  18. Hirschfeld, T. B. (1987) Apparatus for improving the numerical aperture at the input of a fiber optic device. US Patent 4,654,532.

    Google Scholar 

  19. Jackson, T. M., et al. Immunoassays for clinical chemistry. (Hunter and Carrie, eds.), Churchill Livingstone, Edinburg, p. 557.

    Google Scholar 

  20. Khosravi, M. J. and Sudbury, R. (1989) Ultra-specific time-resolved immunofluorometric assay of latrotin in serum.Clin. Chem. 352251.

    PubMed  CAS  Google Scholar 

  21. Bluestein, B. (1987) Optical response immunosensors—instant quantitative immunoassay technology for clinical diagnosis.Clin. Chem.33, 1061.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lackie, S.J., Glass, T.R., Block, M.J. (1991). Instrumentation for Cylindrical Waveguide Evanescent Fluorosensors. In: Wise, D.L., Wingard, L.B. (eds) Biosensors with Fiberoptics. Contemporary Instrumentation and Analysis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0483-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0483-1_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6782-9

  • Online ISBN: 978-1-4612-0483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics