Skip to main content

Fluorescent Labels

  • Chapter
Biosensors with Fiberoptics

Part of the book series: Contemporary Instrumentation and Analysis ((CIA))

Abstract

It is fortunate that from most biomolecules there is relatively low intrinsic background fluorescence in the visible spectrum, since the low background emission permits the selective detection of extrinsic fluorescent probes to trace and quantitate biomolecules and to elucidate many features of biological structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson, P. A., Barber, T. E., Smith, B. W., and Winefordner, J. D. (1989) Ultralow detection limits for an organic dye determined by fluorescence spectroscopy with laser diode excitation. Anal. Chem. 61, 861–863.

    Article  CAS  Google Scholar 

  2. Mathies, R. A., and Stryer, L. (1986) Single molecule fluorescence detection: A feasibility study using phycoerythrin, in Applications of Fluorescence in the Biomedical Sciences (Taylor, D. L., Waggoner, A. S., Lanni, F., Murphy, R. F., and Birge, R., eds.), Alan R. Liss, New York pp. 129–140.

    Google Scholar 

  3. Weber, G., and Farris, F. J. (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-Propionyl-2-dimethylaminonaphthalene. Biochemistry 18, 3075–3078.

    Article  PubMed  CAS  Google Scholar 

  4. White, J. C. and Stryer, L. (1987) Photostability studies of phycobiliprotein fluorescent labels. Anal. Biochem. 161, 442–452.

    Article  PubMed  CAS  Google Scholar 

  5. Haugland, R. P. (1982) Covalent fluorescent probes, in Fluorescence of Proteins and Nucleic Acids, 2nd Ed. (Steiner, R. F., ed.), Plenum, NY, pp. 29–58.

    Google Scholar 

  6. Kanaoka, Y. (1977) Organic fluorescence reagents in the study of enzymes and proteins. Angew Chem. Int. Ed. Engl. 16,137–147.

    Article  PubMed  CAS  Google Scholar 

  7. Haugland, R. P. (1989) Handbook of Fluorescent Probes and Research Chemicals. Molecular Probes, Inc., Eugene, OR.

    Google Scholar 

  8. Means, G. E. and Feeney, R. E. (1990) Chemical modification of proteins. Biocon. J. Chem. 1, 2.

    CAS  Google Scholar 

  9. Blakeslee, D. and Baines, M.G. (1976) Immunofluorescence using dichlorotriazinylaminofluorescein (DTAF). Preparation and fractionation of labeled IgG. J. Immunol. Meth. 13, 305–320.

    Article  CAS  Google Scholar 

  10. Der-Balian, G. P., Kameda, N., and Rowley, G. L. (1988) Fluorescein labeling of Fab’ while preserving single thiol. Anal. Biochem. 173, 59–63.

    CAS  Google Scholar 

  11. Giloh, H. and Sedat, J. W. (1982) Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-pmpyl gallate. Science 217, 1252–1255.

    Article  PubMed  CAS  Google Scholar 

  12. Johnson, G. D., Davidson, R. S., McNamee, K. C., Russel, G., Goodwin, D., and Holborow, E. J. (1982) Fading of immunofluorescence during microscopy: A study of the phenomena and its remedy. J. Immunol. Methods 55, 231–242.

    Article  PubMed  CAS  Google Scholar 

  13. Titus, J. A., Haugland, R., Sharrow, S. O., and Segal, D. M. (1982) Texas Red®a hydrophilic, red-emitting fluorophore for use with fluorescein in dual parameter flow microfluorometric and fluorescence microscopic studies. J. Immunol. Methods 50,193–204.

    Article  PubMed  CAS  Google Scholar 

  14. Khalfan, H., Abuknesha, R., Rand-Weaver, M., Price, R. G., and Robinson, D. (1986) Aminomethyl coumarin acetic acid: A new fluorescent labeling agent for proteins. Histochem. J. 18, 497–499.

    CAS  Google Scholar 

  15. Nederlof, P. M., Robinson, D. Abuknesha,R., Hopman, A. H. N., Tanke, H. J., and Raap, A. K. (1989) Three-color fluorescence in situ hybridization for the simultaneous detection of muitiple nucleic acid sequences.Cytometry 10, 20–27.

    Article  PubMed  CAS  Google Scholar 

  16. Oi, V., Glazer, A. N., and Stryer, L. (1982) Fluorescent phycobiliprotein conjugates for analysis of cells and molecules. J. Cell Biol. 93,981–986.

    Article  PubMed  CAS  Google Scholar 

  17. Carlsson, J., Drevin, H., and Axen, R. (1978) Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. Biochem. J. 173, 723–737.

    CAS  Google Scholar 

  18. Yoshitaki, S., Yamada, Y., Ishikawa, E., and Masseyeff, R. (1979) Conjugation of glucose oxidase from Aspergillus Niger and rabbit antibodies using N-hydroxysuccinimide ester ofN-(4-carboxycyclohexylmethyl)-Maleimide. Eur. J. Biochem. 101, 395–399.

    Article  Google Scholar 

  19. Truneh, A. and Machy, P. (1987) Detection of very low receptor numbers on cells by flow cytometry using a sensitive staining method. Cytometry 8, 562–567.

    Article  PubMed  CAS  Google Scholar 

  20. Haugland, R. P. and Kang, H. C. (1988) Chemically reactive dipyrrometheneboron difluoride dyes. US Patent 4,774,339.

    Google Scholar 

  21. Treibs, A., and Kreuzer, F. H. (1968) Difluorboryl-komplexe von diund tripyrrylmethenen. Liebigs Annalen Chem. 718, 203–223.

    Google Scholar 

  22. DeBiasio, R., Bright, G. R., Ernst, L. A., Waggoner, A. S. and Tayla, D. L. (1987) Five-parameter fluorescence imaging: Wound healing of living Swiss 3T3 cells. J. Cell Biol. 105,1613–1623.

    Article  PubMed  CAS  Google Scholar 

  23. Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes, P., Dodd, C., Connell, C. R., Heiner, C., Kent, S. B. H., and Hood, L. E. (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321, 674–679.

    Article  PubMed  CAS  Google Scholar 

  24. Prober, J. M., Trainer, G. L., Dam, R. J., Hobbs, F. W., Robertson, C. W., Zagursky, R. J., Cocuzza, A. J., Jensen, M. A., and Baumeister, K. (1987) A system for the rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science 238, 336–341.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haugland, R.P. (1991). Fluorescent Labels. In: Wise, D.L., Wingard, L.B. (eds) Biosensors with Fiberoptics. Contemporary Instrumentation and Analysis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0483-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0483-1_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6782-9

  • Online ISBN: 978-1-4612-0483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics