In Vivo Applications of Fiberoptic Chemical Sensors

  • Amos Gottlieb
  • Skip Divers
  • Henry K. Hui
Part of the Contemporary Instrumentation and Analysis book series (CIA)

Abstract

As stated at the beginning of this volume, the term “biosensor” refers to sensors that use biomolecules in the molecular recognition or transduction processes. Although there have been many proposals to use fiberoptic biosensors in vivo, almost all the work to date has been in vitro. In the more general class of fiberoptic chemical sensors, in vivo applications have progressed further. Intravascular fiberoptic blood-gas chemical sensors have been developed and are currently undergoing clinical evaluation.

Keywords

Catheter Fermentation Ischemia Steam Bicarbonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thompson, M. and Vandenberg, E. T. (1986) In vivo probes: Problems and perspectives. Clin. Biochem. 19, 255–261.PubMedCrossRefGoogle Scholar
  2. 2.
    Regnault, W. F. and Picciolo, G. L. (1987) Review of medical biosensors and associated materials problems. J. Biomed. Nater. Res.: Appl. Biomater. 21(A2), 163–180.Google Scholar
  3. 3.
    Yafuso, M., Arick, S. A., Hansmann, D., Holody, M., Miller, W. W., and Yan, C. F. (1989) Optical pH measurements in blood. Proc. SPIS-ont. Soc. Opt. Eng. 1067 (Optical Fibers in Medicine IV), 37–43.Google Scholar
  4. 4.
    Barker, S.J., Tremper, K. K., Hyatt, J., Zaccari, J., Heitzmann, H. A., Holman, B. M., Pike, K., Ring, L. S., Teope, M., andThaure, T. B. (1987) Continuous fiberoptic arterial oxygen tension measurements in dogs. J. Clin. Monit. 3, 48–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Kim, S. W. and Feijen, J. (1985) Surface modification of polymers for improved blood compatibility. CRC Crit. Rev. Biocompat.1(3), 229–260.Google Scholar
  6. 6.
    Williams, D. F., ed. (1987) Blood Compatibility, vols. 1 and 2 (CRC Press, Boca Raton, FL).Google Scholar
  7. 7.
    Eberhart, R. C. (1985) Indwelling blood compatible chemical sensors. Surg. Clin. North Am. 65(4), 1025–1040.Google Scholar
  8. 8.
    Eberhart, R. C., Munro, M. S., Williams, G. B., Kulkarni, P. V., Shannon, W. A. Jr., and Brink, B. E. (1987) Albumin adsorption and recension on alkyl derivatized polyurethane vascular grafts. Artif. Organs 11, 375–382.CrossRefGoogle Scholar
  9. 9.
    Munro, M. S., Quattrone, A. J., Ellsworth, S. R., and Eberhart, R. C. (1985) Nonthrombogenic articles having enhanced albumin affinity. US Patent 4,530,974.Google Scholar
  10. 10.
    Shapiro, B. A., Cane, R. D., Chomka, C. M., Bandala, L. E., and Peruzzi, W. T. (1989) Preliminary evaluation of an intra-arterial blood gas system in dogs and humans. Crit. Care Med. 17(5), 455–460.CrossRefGoogle Scholar
  11. 11.
    Gehrich, J. L., Lubbers, D. W., Opitz, N., Hansmann, D. R., Miller, W. W., Tusa, J. K., and Yafuso, M. (1986) Optical fluorescence and its application to an intravascular blood gas monitoring system. IEEE Trans. Biomed. Eng. BME-33(2), 117–132.CrossRefGoogle Scholar
  12. 12.
    Miller, W. W., Gehrich, J. L., Hansmann, D. R., and Yafuso, M. (1988) Continuous in vivo monitoring of blood gases. Lab. Med.19(10), 629–635.Google Scholar
  13. 13.
    Gunther, M. and Rupp, L. (1990) Method for manufacturing a measuring probe. US Patent 4,900,381.Google Scholar
  14. 14.
    Friebele, E. J. (1979) Optical fiber waveguides in radiation environments. Opt. Eng. 18(6), 552–561.Google Scholar
  15. 15.
    Boiarski, A. A. (1989) Integrated optic system for monitoring blood gases. US Patent 4,854,321.Google Scholar
  16. 16.
    Marcuse, D. (1988) Launching light into fiber cores from sources located in the cladding. J. Lightwave Tech. 6(8),1273–1279.CrossRefGoogle Scholar
  17. 17.
    Hui, H. K., Divers, S., Lumsden, T., Wallner, T., and Weir, S. (1990) An accurate, low-cost, easily-manufacturable oxygen sensor. Proc. SPIET—Int. Soc. Opt. Eng. 1172 (Chemical, Biochemical, and Environmental Fiber Sensors), 233–238.Google Scholar
  18. 18.
    Blyler, L. L., Jr., Lieberman, R. A., Cohen, L. G., Ferrara, J. A., and Macchesney, J. B. (1989) Optical fiber chemical sensors utilizing dye-doped silicone polymer claddings. Polym. Eng. Sci. 29(17), 1215–1218.Google Scholar
  19. 19.
    David, D. J., Willson, M. C., and Ruffin, D. S. (1976) Direct measurement of ammonia in ambient air. Anal. Lett. 9(4), 389–404.Google Scholar
  20. 20.
    Louch, J. and Ingle, J. D., Jr. (1988) Experimental comparison of single-and double-fiber configurations for remote fiber-optic fluorescence sensing. Anal. Chem. 60, 2537–2540.Google Scholar
  21. 21.
    Wolfbeis, O. S., Weis, L. J., Leiner, M. J. P., and Ziegler, W. E. (1988) Fiber-optic fluorosensor for oxygen and carbon dioxide. Anal. Chem. 60, 2028–2030.Google Scholar
  22. 22.
    Rahn, H. and Prakash, O., eds. (1985) Acid Base Regulation and Body Ternperature (Developments in Critical Care Medicine and Anaesthesiology, vol. 10) (Kluwer Academic, Boston).Google Scholar
  23. 23.
    Siggaard-Andersen, O., Wimberley, P. D., Gothgen, I. H., Fogh-Andersen, N., and Rasmussen, J. P. (1988) Variability of the temperature coefficients for pH, pCO2, and p02 in blood. Scand. J. Clin. Lab. Invest. 48, 85–88.Google Scholar
  24. 24.
    Kelman, G. R. and Nunn, J. F. (1966) Nomograms for correction of blood pO2, pCO2, pH, and base excess for time and temperature. J. Appl. Physiol. 21(5), 1484–1490.PubMedGoogle Scholar
  25. 25.
    Burnett, R. W., Christiansen, T. F., Durst, R. A., Evenson, R., Fallon, K., Komjathy, Z. L., Ladenson, J. H., Moran, R. F., Pulwer, E., Weisberg, H. F., and Zee, D. (1982) Tentative standard for definitions of quantities and conventions related to blood pH and gas analysis. National Committee for Clinical Laboratory Standards 2(10), 329–361.Google Scholar
  26. 26.
    Severinghaus, J. W. and Bradley, A. F. (1958) Electrodes for blood p02 and pCO2 determination. J. Appl. Physiol. 13, 515–520.PubMedGoogle Scholar
  27. 27.
    Vurek, G. G., Feustel, P. J., and Severinghaus, J. W. (1984) A fiber optic pCO2 sensor. Ann. Biomed. Eng. 11, 499–510.CrossRefGoogle Scholar
  28. 28.
    Arnold, M. A. and Ostler, T. J. (1986) Fiber optic ammonia gas sensing probe. Anal. Chem. 58, 1137–1140.Google Scholar
  29. 29.
    Wolfbeis,O. S., Posch, H. E., and Kroneis, H. W. (1985) Fiber optical fluorosensor for determination of halothane and/or oxygen. Anal. Chem. 57, 2556–2561.Google Scholar
  30. 30.
    Lee, E. D., Werner, T. C., and Seitz, W. R. (1987) Luminescence Ratio Indicators for Oxygen. Anal. Chem. 59, 279–283.Google Scholar
  31. 31.
    Zhujun, Z. and Seitz, W. R. (1984) A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5. Anal. Chim. Acta 160, 47–55.Google Scholar
  32. 32.
    Lippitsch, M. E. and Wolfbeis, O. S. (1988) Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier. Anal. Chim. Acta 205, 1–6.Google Scholar
  33. 33.
    Khalil, Gamal-E., Gouterman, M. P., and Green, E. (1989) Method for measuring oxygen concentration. US Patent 4,810,655.Google Scholar
  34. 34.
    Culshaw, B., Foley, J., and Giles, I. P. (1984) A balancing technique for optical fibre intensity modulated transducers. Proc. SPIS-lnt. Soc. Opt. Eng. 574 (Proc. 2nd Int. Conf. Fibre Optic Sensors, Stuttgart), 117–120.Google Scholar
  35. 35.
    Bland, J. M. and Altman, D. G. (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet i, 307–310.CrossRefGoogle Scholar
  36. 36.
    Vaughan, W. M. and Weber, G. (1970) Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment. Biochemistry 9(3), 464–473.PubMedCrossRefGoogle Scholar
  37. 37.
    Wolfbeis, O. S. and Leiner, M. J. P. (1988) Recent progress in optical oxygen sensing. Proc. SPIE- Int. Soc. Opt. Eng. 906 (Optical Fibers in Medicine), 42–48.Google Scholar
  38. 38.
    Freeman, T. M. and Seitz, W. R. (1980) Oxygen probe based on tetrakis(alkylamino)ethylene chemiluminescence. Anal. Chem. 53(1), 98–102.Google Scholar
  39. 39.
    Zhujun, Z. and Seitz, W. R. (1985) Optical sensor for oxygen based on immobilized hemoglobin. Anal. Chem. 58, 220–222.Google Scholar
  40. 40.
    Wolfbeis, O. S., Offenbacher, H., Kroneis, H., and Marsoner, H. (1984) A fast responding fluorescence sensor of oxygen. Mikrochim. Acta I, 153–158.CrossRefGoogle Scholar
  41. 41.
    Lubbers, D. W. and Opitz, N. (1983) Optical fluorescence sensors for continuous measurement of chemical concentrations in biological systems. Sens. Actuators 4, 641–654.CrossRefGoogle Scholar
  42. 42.
    Lakowitz, J. R. (1983) Principles of Fluorescence Spectroscopy (Plenum, New York).CrossRefGoogle Scholar
  43. 43.
    Kroneis, H. W. and Marsoner, H. J. (1983) A fluorescence-based sterilizable oxygen probe for use in bioreactors. Sens. Actuators 4, 587–592.CrossRefGoogle Scholar
  44. 44.
    Barnikol, W. K. R., Gaertner, T., Weiler, N., and Burkhard, O. (1988) Microdetector for rapid changes of oxygen partial pressure (p02) during the respiratory cycle in small animals. Rev. Sci. Instrum. 59(7), 1204–1208.CrossRefGoogle Scholar
  45. 45.
    Peterson, J. I. and Fitzgerald, R. V. (1984) Fiber optic p02 probe. US Patent 4,476,870.Google Scholar
  46. 46.
    Peterson, J. I., Fitzgerald, R. V., and Buckhold, D. K. (1984) Fiber-optic probe for in vivo measurement of oxygen partial pressure. Anal. Chem. 56, 62–67.Google Scholar
  47. 47.
    Bergman, I. (1968) Improvements in or relating to gas detectors. UK Patent 1,190,583.Google Scholar
  48. 48.
    Stevens, B. (1971) Instrument for determining oxygen quantities by measuring oxygen quenching of fluorescent radiation. US Patent 3,612,866.Google Scholar
  49. 49.
    Hesse, Hans-C. (1974) Measuring Probe. GDR Patent 106,086.Google Scholar
  50. 50.
    Lubbers, D. W. and Opitz, N. (1985) Method and arrangement for measuring the concentration of gases. US Patent Re. 31,879.Google Scholar
  51. 51.
    Opitz, N. and Lubbers, D. W. (1987) Theory and development of f luorescencebased optochemical oxygen sensors: Oxygen optodes.Int. Anesth. Clin. 25(3), 177–179.CrossRefGoogle Scholar
  52. 52.
    Siggaard-Andersen, O., Gothgen, I. H., Wimberley, P. D., Rasmussen, J. P., and Fogh-Andersen, N. (1988) Evaluation of the Gas-STAT fluorescence sensors for continuous measurement of pH, pCO2, and p02 during cardiopulmonary bypass and hypothermia. Scand. J. Clin. Lab. Invest. 48, 77–84.Google Scholar
  53. 53.
    Buckles, R. G. (1982) Method for quantitative analysis using optical fibers. US Patent 4,321,057.Google Scholar
  54. 54.
    Buckles, R. G. (1983) Optical fiber apparatus for quantitative analysis. US Patent 4,399,099.Google Scholar
  55. 55.
    Bacon, J. R. and Demas, J. N. (1984) Method and apparatus for determining the presence of oxygen. UK Patent GB 2,132,348 A (Application).Google Scholar
  56. 56.
    Cox, M. E. and Dunn, B. (1985) Detection of oxygen by fluorescence quenching. Appl. Opt. 24(14), 2114–2120.Google Scholar
  57. 57.
    Yafuso, M., Yan, C. F., Hui, H. K., and Miller, W. W. (1989) Optical sensor. US Patent 4,849,172.Google Scholar
  58. 58.
    Marsoner, H., Kroneis, H., and Wolfbeis, O. (1987) Sensor element for determining the oxygen content and a method of preparing the same. US Patent 4,657,736.Google Scholar
  59. 59.
    Hsu, L. and Heitzmann, H. (1987) Dye containing silicone polymer composition. US Patent 4,712,865.Google Scholar
  60. 60.
    Klainer, S. M., Walt, D. R., and Gottlieb, A. J. (1988) Fibre optic sensing device and new polymer—useful as pH, oxygen, electrolyte or blood gas sensor. World Patent WO 8805533 A (Application).Google Scholar
  61. 61.
    Bacon, J. R. and Demas, J. N. (1987) Determination of oxygen concentration by luminescence quenching of a polymer-immobilized transition-metal complex. Anal. Chem. 59,2780–2785.Google Scholar
  62. 62.
    Murray, R. C. and Lefkowitz, S. M. (1988) Optical sensor for monitoring the partial pressure of oxygen. US Patent 4,752,115.Google Scholar
  63. 63.
    Nestor, J. R., Schiff, J. D., and Priest, B. H. (1990) Excitation and detection apparatus for remote sensor connected by optical fiber. US Patent 4,900,933.Google Scholar
  64. 64.
    Li, P. Y. F. and Narayanaswamy, R. (1989) Oxygen-sensitive reagent matrices for the development of optical fiber chemical transducers. Analyst 114, 663–666.CrossRefGoogle Scholar
  65. 65.
    Surgi, M. R. (1989) Design and evaluation of a reversible fiber optic sensor for determination of oxygen, in Applied Biosensors (Wise, D. L., ed.), Butterworths, Boston, pp. 249–290.Google Scholar
  66. 66.
    Marsoner, H. and Kroneis, H. (1986) Measuring device for deteriming the 02 content of a sample. US Patent 4,587,101.Google Scholar
  67. 67.
    Wolfbeis, O. S., Leiner, M. J. P., and Posch, H. E. (1986) A new sensing material for optical oxygen measurement, with the indicator embedded in an aqueous phase. Mikrochim. Acta 1986 III(5–6), 359–366.Google Scholar
  68. 68.
    Lubbers, D. W. and Opitz, N. (1981) Photometer including auxiliary indicator means. US Patent 4,255,053.Google Scholar
  69. 69.
    Stefansson, E., Peterson, J. I., and Wang, Y. H. (1989) Intraocular oxygen tension measured with a fiber-optic sensor in normal and diabetic dogs. Am. J. Physiol. 256, H1127–H1133.PubMedGoogle Scholar
  70. 70.
    Larson, C. P., Jr., Riccitelli, S. D., Divers, S., Hui, H. K., Wallner, T. G., Boyles, J. V. C., and Lumsden, T. J. (1990) Evaluation of a continuous, in vivo blood gas monitoring system in patients. Abstracts of the Association of University Anesthetists Annual Meeting (Seattle, WA, May 3–5, 1990) (in press).Google Scholar
  71. 71.
    Shapiro, B., Cane, R., Chomka, C., and Gehrich, J. (1987) Evaluation of a new intra-arterial blood gas system in dogs and humans. Anesthesiology 67(3A), A640.CrossRefGoogle Scholar
  72. 72.
    Barker, S. J., Hyatt, J., Tremper, K. K., Gehrich, J. L., Arick, S. M., Gerschultz, S., and Safdari, K. (1989) Fiberoptic intraarterial pHa, Pa02, and PaCO2 in the operating room. Anesth. Analg. 68, S 16.Google Scholar
  73. 73.
    Miller, W. W., Yafuso, M., Yan, C. F., Hui, H. K., and Arick, S. (1987) Performance of an in-vivo continuous blood-gas monitor with disposable probe. Clin. Chem. 33(9), 1538–1542.Google Scholar
  74. 74.
    Barker, S. J., Tremper, K. K., and Heitzmann, H. A. (1987) Continuous fiberoptic arterial oxygen tension in dogs. Crit. Care Med. 15, 403.Google Scholar
  75. 75.
    Barker, S. J., Tremper, K. K., and Heitzmann, H. A. (1987) A clinical study of fiber-optic arterial oxygen tension. Crit. Care Med. 15, 403.Google Scholar
  76. 76.
    Kolthoff, I. M. and Laitinen, H. A. (1941) pH and Electro Titrations. The Colorimetric and Potentiometric Determination of pH, 2nd ed. (Wiley, New York).Google Scholar
  77. 77.
    Bates, R. G. (1973) Determination of pH. Theory and Practice, 2nd ed. (WileyInterscience, New York).Google Scholar
  78. 78.
    Peterson, J. I., Goldstein, S. R., Fitzgerald, R. V., and Buckhold, D. K. (1980) Fiber optic pH probe for physiological use. Anal. Chem. 52, 864–869.Google Scholar
  79. 79.
    Willard, H. H., Merritt, L. L., Dean, J. A., and Settle, F. A., Jr. (1981). Instrumental Methods of Analysis, 6th ed. (Wadsworth, Belmont, CA).Google Scholar
  80. 80.
    Wolfbeis, O. S., Furlinger, E., Kroneis, H., and Marsoner, H. (1983) Fluorimetric Analysis. I. A study on fluorescent indicators for measuring near neutral (physiological) pH-values. Fresenius Z. Anal. Chem. 314,119–124.Google Scholar
  81. 81.
    Junker, B. H., Wang, D. I. C., and Hatton, T. A. (1988) Fluorescence sensing of fermentation parameters using fiber optics. Biotech. Bioeng. 32, 55–63.CrossRefGoogle Scholar
  82. 82.
    Goldstein, S. R., Peterson, J. I., and Fitzgerald, R. V. (1980) A miniature fiber optic pH sensor for physiological use. J. Biomech. Eng. 102, 141–146.PubMedCrossRefGoogle Scholar
  83. 83.
    Peterson, J. I. and Goldstein, S. R. (1980) Fiber optic pH probe. US Patent 4,200,110.Google Scholar
  84. 84.
    Tait, G. A., Young, R. B., Wilson, G. J., Steward, D. J., and MacGregor, D. C. (1982) Myocardial pH during regional ischemia: Evaluation of a fiber-optic photometric probe. Am. J. Physiol. 243, H1027—H1031.PubMedGoogle Scholar
  85. 85.
    Takach, T. J., Glassman, L. R., Ribakove, G. H., and Clark, R. E. (1986) Continuous measurement of intramyocardial pH: Correlation to functional recovery following normothermic and hypothermic global ischemia. Ann. Thorac. Surg. 42, 31–36.PubMedCrossRefGoogle Scholar
  86. 86.
    Watson, R. M., Markle, D. R., Ro, Y. M., Goldstein, S. R., McGuire, D. A., Peterson, J. I., and Patterson, R. E. (1984) Transmural pH gradient in canine myocardial isechmia. Am. J. Physiol. 246, H232–238.PubMedGoogle Scholar
  87. 87.
    Watson, R. M., Markle, D. R., McGuire, D. A., Vitale, D., Epstein, S. E., and Patterson, R. E. (1985) Effect of verapamil on pH of ischemic canine myocardium. J. Am. Coll. Cardiol. 5(6), 1347–1354.PubMedCrossRefGoogle Scholar
  88. 88.
    Takach, T. J., Glassman, L. R., Milewicz, A. L., and Clark, R. E. (1986) Continuous measurement of intramyocardial pH: Relative importance of hypothermia and cardioplegic perfusion pressure and temperature. Ann. Thorac. Surg. 42, 365–371.PubMedCrossRefGoogle Scholar
  89. 89.
    Maturi, M. F., Greene, R., Speir, E., Burrus, C., Dorsey, L. M. A., Markle, D. R., Maxwell, M., Schmidt, W., Goldstein, S. R., and Patterson, R. E. (1989) Neuropeptide-Y. A peptide found in human coronary arteries constricts primarily small coronary arteries to produce myocardial ischemia in dogs. J. Clin. Invest. 83,1217–1224.PubMedCrossRefGoogle Scholar
  90. 90.
    Ro, Y. M., Markle, D. R., Goldstein, S. R., Speir, E., Greene, R., Steadman, K., Aamodt, R., Epstein, S. E., and Patterson, R. E. (1989) Contrasting effects of verapamil and nifedipine on pH of ischemic myocardium in the dog. J. Pharmacol. Exp. Ther. 248(2), 654–660.Google Scholar
  91. 91.
    Kirkbright, G. F., Narayanaswamy, R., and Welti, N. A. (1984) Fibre-optic pH probe based on the use of an immobilised colorimetric indicator. Analyst 109,1025–1028.CrossRefGoogle Scholar
  92. 92.
    Markle, D. R., McGuire, D. A., Goldstein, S. R., Patterson, R. E., and Watson, R. M. (1981) A pH measurement system for use in tissue and blood employ-ing miniature fiber optic probes, in Advances in Bioengineering (Viano, D., ed.) American Society of Mechanical Engineering, New York, pp. 123–126.Google Scholar
  93. 93.
    Abraham, E., Markle, D. R., Fink, S., Ehrlich, H., Tsang, M., Smith, M., and Meyer, A. (1985) Continuous measurement of intravascular pH with a fiberoptic sensor. Anesth. Analg. 64,731–736.CrossRefGoogle Scholar
  94. 94.
    Costello, D. (1987) Fiber optic probe for quantification of colorimetric reactions. US Patent 4,682,895.Google Scholar
  95. 95.
    Chatterjee, M. S., Hetzel, F., and Kaminetzky, H. K. (1984) Fetal tissue pH—continuous monitoring. Int. J. Gynaecol. Obstet. 22(1), 41–46.PubMedCrossRefGoogle Scholar
  96. 96.
    Hochberg, H. M., Roby, P. V., Snell, H. M., Smith, W. D., and Chatterjee, M. S. (1988) Continuous intrapartum fetal scalp tissue pH and ECG monitoring by a fiberoptic probe. J. Perinat. Med. 16, 71–86.PubMedCrossRefGoogle Scholar
  97. 97.
    Grattan, K. T. V., Mouaziz, Z., and Palmer, A. W. (1987) Dual wavelength optical fiber sensor for pH measurement. Biosensors 17–25.Google Scholar
  98. 98.
    Guthrie, A. J., Narayanaswamy, R., and Welti, N. A. (1988) Solid-state instrumentation for use with optical-fibre chemical-sensors. Talanta 35(2),157–159.PubMedCrossRefGoogle Scholar
  99. 99.
    Boisde, G. and Perez, J. J. (1987) Miniature chemical optical fiber sensors for pH measurements. Proc. SPIE—Int. Soc. Opt. Eng. 798 (Fiber optic Sensors II), 238–245.Google Scholar
  100. 100.
    Besar, S. S. A., Kelly, S. W., and Greenhalgh, P. A. (1989) Simple fibre optic spectrophotometric cell for pH determination. J. Biomed. Eng. 11,151–156.PubMedCrossRefGoogle Scholar
  101. 101.
    Coleman, J. T., Eastham, J. F., and Sepaniak, M. J. (1984) Fiber optic based sensor for bioanalytical absorbance measurements. Anal. Chem. 56, 2246–2249.Google Scholar
  102. 102.
    Skogerboe, K. J. and Yeung, E. S. (1987) Stray light rejection in fiber-optic probes. Anal. Chem. 59,1812–1815.Google Scholar
  103. 103.
    Yasuso, M. and Hui, H. K. (1989) Micro Sensor. US Patent 4,798,738.Google Scholar
  104. 104.
    Bacci, M., Baldini, F., and Scheggi, A. M. (1988) Spectophotometric investigations on immobilized acid-base indicators. Anal. Chim. Acta 207, 343–348.Google Scholar
  105. 105.
    Jones, T. P. and Porter, M. D. (1988) Optical pH sensor based on the chemical modification of a porous polymer film. Anal. Chem. 60, 404–406.Google Scholar
  106. 106.
    Moreno, M. C., Marinez, A., Millan, P., and Camara, C. (1986) Study of a pH sensitive optical fibre sensor based on the use of cresol red. J. Mol. Struct. 143, 553–556.CrossRefGoogle Scholar
  107. 107.
    Guilbault, G. G. (1973) Practical Fluorescence (Marcel Dekker, New York).Google Scholar
  108. 108.
    Lubbers, D. W., Opitz, N., Speiser, P. P., and Bisson, H. J. (1977) Nanoencapsulated fluorescence indicator molecules measuring pH and pO2 down to submicroscopical regions on the basis of the optode-principle. Z. Naturforsch. 32c, 133–134.Google Scholar
  109. 109.
    Lubbers, D. W. and Opitz, N. (1983) Blood gas analysis with fluorescence dyes as an example of their usefulness as quantitative chemical sensors, in Proceedings of the International Meeting on Chemical Sensors, Analytical Chemistry Symposia, 17 (Seiyama, T., Fueki, K., Shiokawa, J., and Suzuki, S., eds.), Elsevier, New York, pp. 609–619.Google Scholar
  110. 110.
    Offenbacher, H., Wolfbeis, O. S., and Furlinger, E. (1986) Fluorescence optical sensors for continuous determination of near-neutral pH values. Sens. Actuators 9,73–84.CrossRefGoogle Scholar
  111. 111.
    Seitz, W. R. and Zhujun, Z. (1985) Fluorescent fluid determination method and apparatus. US Patent 4,548,907.Google Scholar
  112. 112.
    Saari, L. A. and Seitz, W. R. (1982) pH sensor based on immobilized fluoresceinamine. Anal. Chem. 54, 821–823.CrossRefGoogle Scholar
  113. 113.
    Munkholm, C., Walt, D. R., Milanovich, F. P., and Klainer, S. M. (1986) Polymer modification of fiber optic chemical sensors as a method of enhancing fluorescence signal for pH measurement. Anal. Chem. 58,1427–1430.Google Scholar
  114. 114.
    Lutty, G. A. (1978) The acute intravenous toxicity of biological stains, dyes, and other fluorescent substances. Toxicol. Appl. Pharmacol. 44, 225–249.Google Scholar
  115. 115.
    Haugland, R. P. (1989) Handbook of Fluorescent Probes and Research Chemicals (Molecular Probes, Eugene, OR).Google Scholar
  116. 116.
    Opitz, N. and Lubbers, D. W. (1985) The applicability of fluorescence indicators to measure hydrogen ion activities by optimizing accuracy and minimizing the influence of ionic strength, in Ion Measurements in Physiology and Medicine (Kessler, M., Harrison, D. K., and Hoper, J., eds.), Springer-Verlag, Berlin, Heidelberg, pp. 122–127.CrossRefGoogle Scholar
  117. 117.
    Zhujun, Z., Zhang, Y., Wangbai, M., Russell, R., Shakhsher, Z. M., Grant, C. L., Seitz, W. R., and Sundberg, D. C. (1989) Poly(vinyl alcohol) as a substrate for indicator immobilization for fiberoptic chemical sensors. Anal. Chem. 61, 202–205.Google Scholar
  118. 118.
    Wolfbeis, O., Kroneis, H., and Offenbacher, H. (1986) Sensor element for fluorescence-optical measurement. US Patent 4,568,518.Google Scholar
  119. 119.
    Opitz, N. and Lubbers, D. W. (1983) New fluorescence photometrical techniques for simultaneous and continuous measurements of ionic strength and hydrogen ion activities. Sens. Actuators 4, 473–479.CrossRefGoogle Scholar
  120. 120.
    Wolfbeis, O. S. and Offenbacher, H. (1986) Fluorescence sensor for monitoring ionic strength and physiological pH values. Sens. Actuators 9, 85–91.CrossRefGoogle Scholar
  121. 121.
    Janata, J. (1987) Do optical sensors really measure pH? Anal. Chem. 59,1351–1356.Google Scholar
  122. 122.
    Edmonds, T. E., Flatters, N.J., Jones, C. F., and Miller, J. N. (1988) Determination of pH with acid-base indicators: Implications for optical fibre probes. Talanta 25(2), 103–107.CrossRefGoogle Scholar
  123. 123.
    Seitz, W. R. (1987) Optical sensors based on immobilized reagents, in Biosensors. Fundamentals and Applications (Turner, A. P. F., Karube, I., and Wilson, G. S., eds.) Oxford University Press, New York, pp. 599–617.Google Scholar
  124. 124.
    Takach, T. J., Glassman, L. R., Rodriguez, E. R., Falcone, J. T., Ferrans, V. J., and Clark, R. E. (1986) Acute rejection after cardiac transplantation: Detection by interstitial myocardial pH. Ann. Thorac. Surg. 42, 619–626.PubMedCrossRefGoogle Scholar
  125. 125.
    Abraham, E., Fink, S. E., Markle, D. R., Pinholster, G., and Tsang, M. (1985) Continuous monitoring of tissue pH with a fiberoptic conjuctival sensor. Ann. Emerg. Med. 14(9), 840–844.PubMedCrossRefGoogle Scholar
  126. 126.
    Leader, M. J. and Kamiya, T. (1989) Sensor system. US Patent 4,833,091.Google Scholar
  127. 127.
    Lubbers, D. W. and Opitz, N. (1975) The pCO2-/p02 Optode: A new probe for measurement of pCO2 or p02 in fluids and gases. Z. Naturforsch. 30c, 532–533.Google Scholar
  128. 128.
    Zhujun, Z. and Seitz, W. R. (1984) A carbon dioxide sensor based on fluorescence. Anal. Chim. Acta 160, 305–309.Google Scholar
  129. 129.
    Munkholm, C., Walt, D. R., and Milanovich, F. P. (1988) A Fiber-optic sensor for CO2 measurement. Talanta 35(2), 109–112.PubMedCrossRefGoogle Scholar
  130. 130.
    Abraham, E., Markle, D. R., Pinholster, G., and Fink, S. (1986) Noninvasive measurement of conjunctival pCO2 with a fiberoptic sensor. Crit. Care Med. 14 (2), 138–141.PubMedCrossRefGoogle Scholar
  131. 131.
    Kram, H. B., Fink, S., Tsang, M., Markle, D., Appel, P. L., and Shoemaker, W. (1988) Noninvasive measurement of tissue carbon dioxide tension using a fiberoptic conjunctival sensor. Effects of respiratory and metabolic alkalosis and acidosis. Crit. Care Med. 16(3), 280–284.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Amos Gottlieb
  • Skip Divers
  • Henry K. Hui

There are no affiliations available

Personalised recommendations