Skip to main content

Beta-Adrenergic Receptors

Identification and Characterization by Radioligand Binding Studies

  • Chapter
The Beta-Adrenergic Receptors

Part of the book series: The Receptors ((REC))

Abstract

The catecholamines epinephrine and norepinephrine evoke specific beta-adrenergic responses in a variety of tissues.Examples of processes modulated by these agonists are chronotropic and inotropic cardiac responses, relaxation of smooth muscle, and lipolysis in adipose tissue.The facts that beta-adrenergic responses are limited to specific tissues and that there exist stereospecific constraints, i.e., the naturally occurring (-)-isomers of the catecholamines are more potent than the (+)-isomers, imply a recognition system based on stereocomplementarity (Gilbert and Greenberg, 1984).These observations, based on adrenergic responses, reinforce one of the underlying tenets of pharmacology and therapeutics: The specific actions of hormones and neurotransmitters result from high-affinity, stereospecific interactions with tissues.The concept of an entity or substance that recognizes and discriminates on the basis of geometric properties of hormones or drugs has been evolving for more than a century (Langley, 1905; Dale,1906).This proposed moiety has been functionally designated “receptor.” Receptors are defined by their ability to recognize hormones or drugs of a specific class through direct binding interactions and, of equal importance, translate the binding interactions and, of equal importance, translate the binding event into a biological response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlquist, R.P.(1948) A study of the adrenotropic receptors. Am.J.Physiol. 153, 585–600.

    Google Scholar 

  • Atlas, D., Steer, M.L., and Levitzki, A.(1974) Stereospecific binding of propranolol and catecholamines to the beta-adrenergic receptor. Proc.Nad.Acad.Sci.USA 71,4246–4248.

    CAS  Google Scholar 

  • Aurbach, G.D., Fedak, S.A., Woodard, C.J., Palmer, J.S., Hauser, D., and Troxler, F.(1974) The beta-adrenergic receptor: Stereospecific interaction of an iodinated beta-blocking agent with a high affinity site. Science 186, 1223–1224.

    PubMed  CAS  Google Scholar 

  • Barovsky, K.and Brooker, G.(1980)125I-Iodopindolol, a new highly selective radioiodinated beta-adrenergic receptor antagonist: Measurement of beta-receptors on intact rat astrocytoma cells. J.Cyclic Nucl. Res. 6, 297–307.

    CAS  Google Scholar 

  • Benovic, J.L, Shoff, R.G.L, Canon, M.G., and Lefkowitz, R.J.(1984) The mammalian beta-2 adrenergic receptor: Purification and characterization. Biochemistry 23,4510–4518.

    PubMed  CAS  Google Scholar 

  • Bird, S.J.and Maguire, M.B.(1978) The agonist-specific effect of magnesium ion on the binding by beta-adrenergic receptor in S49 lymphoma cells: Interaction of GTP and magnesium in adenylate cyclase activation. J.Biol.Chem. 253, 8826–8829.

    PubMed  CAS  Google Scholar 

  • Bottari, S., Vauquelin, G., Darien, O., Klutchko, C., and Strosberg, A.D.(1979) The beta-adrenergic receptor of turkey erythrocyte membranes: Conformation modification by beta-adrenergic agonists. Biochem.Biophys.Res.Commun. 86,1311–1318.

    PubMed  CAS  Google Scholar 

  • Burgermeister, W., Heiman, M., and Helmreich, F.J.M.(1982) Photoaffinity labeling of the beta-adrenergic receptor with azide derivatives of iodocyanopindolol. J.Biol.Chem. 257, 5306–5311.

    PubMed  CAS  Google Scholar 

  • Burgisser, E.(1984) Radioligand-receptor binding studies: What’s wrong with the Scatchard analysis. Trends Pharmacol.Sci. 5,142–144.

    Google Scholar 

  • Burgisser, E.and Lefkowitz, R.J.(1984) Beta-adrenergic receptors, in Brain Receptor Methodologies Part A -General Methods and Concepts (Marango, P.J., Campbell, I., and Cohen, R.M., eds.), Academic, Orlando, Florida, pp.229–253.

    Google Scholar 

  • Caron, M.G.and Lefkowitz, R.J.(1976) Solubilization and characterization of the beta-adrenergic bindings sites of frog erythrocytes. J.Biol.Chem. 251, 2374–2384.

    PubMed  CAS  Google Scholar 

  • Caron, M.G., Srinivasan, Y., Pitha, J.Kociolek, K., and Lefkowitz, R.J.(1979) Affinity chromatography of the beta-adrenergic receptor. J.Biol.Chem. 254, 2923–2927.

    PubMed  CAS  Google Scholar 

  • Cassel, D.and Selinger, Z.(1978) Mechanism of adenylate cyclase activation through the beta-adrenergic receptor: Catecholamine-induced displacement of bound GDP by GTP. Proc.Natl.Acad.Sci.USA 75, 4155–4159.

    PubMed  CAS  Google Scholar 

  • Cerione, R.A., Codina, J., Benovic, J.L., Lefkowitz, R.J., Bimbaumer, L, and Caron, M.G.(1984) The mammalian beta-2 adrenergic receptor: Reconstitution of functional interactions between pure receptor and pure stimulatory nucleotide binding protein of the adenylate cyclase system. Biochemistry 23, 4519–4525.

    PubMed  CAS  Google Scholar 

  • Cerione, R.A., Strulovici, B., Benovic, J.L., Strader, C.D., Caron, M.G., and Lefkowitz, R.J.(1983) Reconstitution of beta-adrenergic receptors in lipid vesicles: Affinity chromatography-purified receptors confer catecholamine responsiveness on a heterologous adenylate cyclase system. Proc.Natl.Acad.Sci.USA 80, 4899–4903.

    PubMed  CAS  Google Scholar 

  • Citri, Y.and Schramm, M., (1980) Resolution, reconstitution, and kinetics of the primary action of a hormone receptor. Nature 287, 297–300.

    PubMed  CAS  Google Scholar 

  • Citri, Y.and Schramm, M.(1982) Probing of the coupling site of the beta-adrenergic receptor. J.Biol.Chem. 257,13257–13262.

    PubMed  CAS  Google Scholar 

  • Cubero, A.and Malbon, C.C.(1984) The fat cell beta-adrenergic receptor: Purification and characterization of a mammalian beta-1 adrenergic receptor. J.BioL Chem. 259,1344–1350.

    PubMed  CAS  Google Scholar 

  • Dale, H.H.(1906) On some physiological actions of ergot. J.PhysioL (Lond.) 34, 165–206.

    Google Scholar 

  • DeLean, A., Hancock, A.A., and Lefkowitz, R.J.(1982) Validation and statistical analysis of a computer modeling method for quantitative analysis of radioligand binding data for a mixture of pharmacological receptor subtypes. Mol.Pharmacol. 21, 5–16.

    CAS  Google Scholar 

  • DeLean, A., Stadel, J.M., and Lefkowitz, R.J.(1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclasecoupled beta-adrenergic receptor. J.Biol.Chem. 255, 7108–7117.

    CAS  Google Scholar 

  • Eimerl, S., Neufeld, G., Komer, M., and Schramm, M.(1980) Functional implantation of a solubilized beta-adrenergic receptor in the membrane of a cell. Proc.Nat.Acad.Sci.USA 77,760–764.

    PubMed  CAS  Google Scholar 

  • Fleming, J.W.and Ross, E.M.(1980) Reconstitution of beta-adrenergic receptors into phospholipid vesicles: Restoration of [125I]-iodohydroxybenzylpindolol binding to digitonin-solubilized receptors. J.Cyclic Nucleotide Res. 6, 407–419.

    PubMed  CAS  Google Scholar 

  • Gilbert, S.F.and Greenberg, J.P.(1984) Intellectual traditions in the life sciences II: Stereocomplementarity. Perspect.Biol.Med 28,18–34.

    PubMed  CAS  Google Scholar 

  • Gill, D.M.(1977) The mechanism of action of choleratoxin. Adv.Cyclic Nucleotide Res. 8, 85–118.

    PubMed  CAS  Google Scholar 

  • Haga, T., Haga, K., and Gilman, A.G.(1977) Hydrodynamic properties of the beta-adrenergic receptors and adenylate cyclase from wild type and variant S49 lymphoma cells. J.BioL Chem. 252, 5776–5782.

    PubMed  CAS  Google Scholar 

  • Hancock, A.A., DeLean, A., and Lefkowitz, R.J.(1980) Quantitative resolution of beta-adrenergic subtypes by selective ligand binding: Application of a computerized model fitting technique. Mol.Pharmacol. 16, 1–9.

    Google Scholar 

  • Harden, T.K.(1983) Agonist-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase. Pharmacol.Rev. 35, 5–32.

    PubMed  CAS  Google Scholar 

  • Harden, T.K., Cotton, C.U., Waldo, G.L., Lutton, J.K., and Perkins, J.P.(1980) Catecholamine-induced alteration in the sedimentation behavior of membrane-bound beta-adrenergic receptors. Science 210, 441–443.

    PubMed  CAS  Google Scholar 

  • Homcy, C.J., Rockson, S.G., Countaway, J., and Egan, D.A.(1983) Purification and characterization of the mammalian beta-2 adrenergic receptor. Biochemistry 22,660–668.

    PubMed  CAS  Google Scholar 

  • Howlett, A.C., Van Arsdale, P.M., and Gilman, A.G.(1978) Efficiency of coupling between the beta-adrenergic receptor and adenylate cyclase. Mol.PharmacoL 14, 531–539.

    PubMed  CAS  Google Scholar 

  • Hoyer, D., Engle, G., and Berthold, R.(1982) Binding characteristics of (+)-, (+/-) and (-)- [125Iodo]cyanopindolol to guinea pig left ventricle membranes. Naunyn-SchmiedebergsArch.Pharmacol. 318, 319–329.

    CAS  Google Scholar 

  • Hoyer, D., Reynolds, E.E., and Molinoff, P.B.(1984) Agonist-induced changes in the properties of beta-adrenergic receptors on intact S49 lymphoma cells: Time dependent changes in the affinity of the receptor for agonists. Mol.Pharmacol. 25,209–218.

    PubMed  CAS  Google Scholar 

  • Insel, P.A., Mahan, L.C., Motulsky, A.J., Stoolman, L.M., and Koachman, A.M.(1983) Time-dependent decreases in binding affinity of agonists for beta-adrenergic receptors of intact S49 lymphoma cells: A mechanism of desensitization. J.Biol.Chem. 258,13597–13605.

    PubMed  CAS  Google Scholar 

  • Kaslow, H.R., Farfel, Z., Johnson, G.L., and Bourne, H.R.(1979) Adenylate cyclase assembled in vitro: Cholera toxin substrates determine different patterns of regulation by isoproternol and guanosine 5’-triphosphate. Mol.Pharmacol. 15, 472–479.

    PubMed  CAS  Google Scholar 

  • Kent, R.S., DeLean, A., and Lefkowitz, R.J.(1979) A quantitative analysis of beta-adrenergic receptor interactions: Resolution of high-and low-affinity states of the receptor by computer modeling of ligand binding data. Mol.Pharmacol. 17, 14–23.

    Google Scholar 

  • Klotz, I.M.(1983) Ligand-receptor interactions: What we can and cannot learn from binding measurements? Trends Pharmacol.Sci. 4, 253–255.

    CAS  Google Scholar 

  • Korner, M., Gilon, G., and Schramm, M.(1982) Locking of hormone in the beta-adrenergic receptor by attack on a sulfhydryl in an associated component. J.Biol.Chem. 257,3389–3396.

    PubMed  CAS  Google Scholar 

  • Krebs, E.G.and Beavo, J.(1979) Phosphorylation-ephosphorylation of enzymes. Annu.Rev.Biochem. 48, 923–960.

    PubMed  CAS  Google Scholar 

  • Lands, A.M., Arnold, A., McAuliff, J.P., Luduena, F.P., and Braun, T.G.(1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214, 597–598.

    PubMed  CAS  Google Scholar 

  • Langley, J.N.(1905) On the reaction of cells and nerve endings to certain poisons, in regards the reaction of striated muscle to nicotine and curan. J.Physiol.(Lond.) 33, 374–413.

    Google Scholar 

  • Lefkowitz, R.J.and Williams, L.T.(1977) Catecholamine binding to the beta-adrenergic receptor. Proc.Natl.Acad.Sci.USA 74, 515–519.

    PubMed  CAS  Google Scholar 

  • Lefkowitz, R.J., Stadel, J.M., and Caron, M.G.(1983) Adenylate cyclase coupled beta-adrenergic receptors: Structure and mechanisms of activation and desensitization. Annu.Rev.Biochem. 52,159–186.

    PubMed  CAS  Google Scholar 

  • Lefkowitz, R.J., Roth, J., Pricer, W., and Pastan, I.(1970) ACTH receptors: Specific binding of ACTH-[125I] and its relationship to adenyl cyclase. Proc.Natl.Acad.Sci.USA 65,745–753.

    PubMed  CAS  Google Scholar 

  • Lefkowitz, R.J., Mukherjee, C., Coverstone, M., and Caron, M.G.(1974) Stereo-specific [3H](-)alprenolol binding sites, beta-adrenergic receptors and adenyl cyclase. Biochem.Biophys.Res.Commun. 60,703–709.

    PubMed  CAS  Google Scholar 

  • Lefkowitz, R.J., Limbird, L.E., Mukherjee, C., and Caron, M.G.(1976a) The beta-adrenergic receptor and adenylate cyclase. Biochem.Biophys.Acta 457, 1–39.

    CAS  Google Scholar 

  • Lefkowitz, R.J., Mukherjee, C., Limbird, L.E., Caron, M.G., Williams, L.T., Alexander, R.W., Mickey, J.V., and Tate, R.(1976b) Regulation of adenylate cyclase coupled beta-adrenergic receptors. Recent Frog.Horm.Res. 32, 597–632.

    CAS  Google Scholar 

  • Lefkowitz, R.J., Mullikin, D., and Caron, M.G.(1976c) Regulation of beta-adrenergic receptors by guanyl-5’-ylimidophosphate and other purine nucleotides. J.Biol.Chem. 252,799–802.

    Google Scholar 

  • Limbird, L.E.(1986) Cell Surface Receptors: A Short Course on Theory and Methods (Martinies Nijhoff, Boston).

    Google Scholar 

  • Limbird, L.E.and Lefkowitz, R.J.(1976) Adenylate cyclase coupled beta-adrenergic receptors: Effects of membrane lipid-perturbing agents on receptor binding and enzyme stimulation by catecholamines. Mol.Pharmacol. 12, 559–564.

    PubMed  CAS  Google Scholar 

  • Limbird, L.E.and Lefkowitz, R.J.(1977) Resolution of beta-adrenergic receptor binding and adenylate cyclase activity by gel exclusion chromatography. J.Biol.Chem. 252,779–781.

    Google Scholar 

  • Limbird, L.E.and Lefkowitz, R.J.(1978) Agonist-induced increase in apparent beta-adrenergic receptor size. Proc.Natl.Acad.Sci.USA 75,228–232.

    PubMed  CAS  Google Scholar 

  • Limbird, L.E., Hickey, A.R., and Lefkowitz, R.J.(1979) Unique uncoupling of the frog erythrocyte adenylate cyclase system by manganese. J.Biol.Chem. 254, 2677–2683.

    PubMed  CAS  Google Scholar 

  • Limbird, L.E., Gill, D.M., and Lefkowitz, R.J.(1980) Agonist-promoted coupling of the beta-adrenergic receptor with the guanine nucleotide regulatory protein of the adenylate cyclase system. Prot Natl.Acad Sci.USA 77,775–779.

    CAS  Google Scholar 

  • Lyn, S.Y.and Goodfriend, T.L.(1970) Angiotensin receptors. Am. J. Physiol. 218, 1319–1328.

    Google Scholar 

  • Maguire, M.E., Van Arsdale, P.M., and Gilman, A.G.(1976) An agonist-specific effect of guanine nucleotides on binding to the beta-adrenergic receptor. Mol.Pharmacol. 12, 335–339.

    PubMed  CAS  Google Scholar 

  • Mahan, L.C., Motulsky, H.J., and Insel, P.A.(1985) Do agonists promote rapid internalization of beta-adrenergic receptors? Proc.Natl.Acad.Sci.USA 82, 6566–6570.

    PubMed  CAS  Google Scholar 

  • May, D.C., Ross, E.M., Gilman, A.G., and Smigel, M.D.(1985) Reconstitution of catecholamine-stimulated adenylate cyclase activity using three purified proteins. J. Biol. Chem. 260,15829–15833.

    PubMed  CAS  Google Scholar 

  • Minneman, K.P., Pittman, R.N., and Molinoff, P.B.(1981) Beta-adrenergic receptor subtypes: Properties, distribution and regulation. Ann.Rev.Neurosci. 4,419–461.

    PubMed  CAS  Google Scholar 

  • Motulsky, H.J.and Mahan, L.C.(1984) The kinetics of competitive radioligand binding predicted by the law of mass action. Mol.Pharmacol. 25,1–9.

    PubMed  CAS  Google Scholar 

  • Motulsky, H.J., Mahan, L.C., and Insel, P.A.(1985) Radioligands, agonists and membrane receptors on intact cells: Data analysis in a bind. Trends Pharmacol.Sci. 6, 317–319.

    CAS  Google Scholar 

  • Nahorski, S.R.(1981) Identification and significance of beta-adrenergic subtypes, in Towards Understanding Receptors (Lamble, J.W., ed.), Elsevier/North Holland Biomedical, Amsterdam, pp.71–77.

    Google Scholar 

  • Neufeld, G., Steiner, S., Korner, M., and Schramm, M.(1983) Trapping of the beta-adrenergic receptor in the hormone induced state. Proc.Natl.Acad Sci.USA 80, 6441–6446.

    PubMed  CAS  Google Scholar 

  • Northup, J.K., Stemweis, P.C., Smigel, M.D., Schleifer, L.S., Ross, E.M., and Gilman, A.G.(1980) Purification of the regulatory component of adenylate cyclase. Proc.Natl.Acad Sci.USA 77, 6516–6520.

    PubMed  CAS  Google Scholar 

  • O’Donnell, S.R.and Wanstall, J.C.(1987) Functional evidence for differential regulation of beta-adrenoceptor subtypes. Trends Pharmacol.Sci. 8, 265–268.

    Google Scholar 

  • Orly, J.and Schramm, M.(1976) Coupling of catecholamine receptors from one cell with an adenylate cyclase from another cell by cell fusion. Proc.Natl.Acad Sci.USA 73, 4410–4414.

    PubMed  CAS  Google Scholar 

  • Pedersen, S.E.and Ross, E.M.(1982) Functional reconstitution of beta-adrenergic receptors and the stimulatory GTP-binding protein of adenylate cyclase. Proc.Natl.Acad.Sci.USA 79, 7228–7232.

    PubMed  CAS  Google Scholar 

  • Pike, L.J.and Lefkowitz, R.J.(1978) Agonist specific alterations in receptor binding affinity associated with solubilization of turkey erythrocyte membrane beta-adrenergic receptors. Mol.Pharmacol. 14, 370–375.

    PubMed  CAS  Google Scholar 

  • Pike, L.J., Limbird, L.E., and Lefkowitz, R.J.(1979) Beta-adrenoreceptors determine affinity but not intrinsic activity of adenylate cyclase stimulants. Nature 280, 502–504.

    PubMed  CAS  Google Scholar 

  • Pittman, R.N.and Molinoff, P.B.(1980) Interactions of agonists and antagonists with beta-adrenergic receptors on intact L6 muscle cells. J.Cyclic Nucleotide Res. 6, 421–435.

    PubMed  CAS  Google Scholar 

  • Rall, T.W., Sutherland, E.W., and Berthet, J.(1957) The relationship of epinephrine and glucagon to liver phosphorylase IV: Effect of epinephrine, and glucagon on the reactivation of phosphorylase in liver homogenates. J.Biol.Chem. 224, 463–475.

    PubMed  CAS  Google Scholar 

  • Rashidbaigi, A.and Ruoho, A.E.(1982) Iodoazidobenzylpindolol, a photoaffinity probe for the beta-adrenergic receptor. Proc.Natl.Acad.Sci.USA 78,1609–1613.

    Google Scholar 

  • Robison, G.A., Butcher, R.W., and Sutherland, E.W.(1971) Cyclic AMP (Academic, New York).

    Google Scholar 

  • Rodbell, M., Birnbaumer, L., Pohl, S.L., and Krans, H.M.(1971a) The glucagonsensitive adenyl cyclase system in plasma membranes of rat liver: An obligatory role of guanine nucleotides in glucagon action. J.Biol.Chem. 246, 1877–1882.

    CAS  Google Scholar 

  • Rodbell, M., Krans, H.M.J., Pohl, S.L., and Birnbaumer, L.(1971b) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver IV: Effects of guanyl nucleotides on the binding of 125I-glucagon. J.BioL Chem. 246,1872–1876.

    CAS  Google Scholar 

  • Rosenthal, H.E.(1967) Graphical method for the determination and presentation of binding parameters in a complex system. Anal.Biochem. 20,525–532.

    PubMed  CAS  Google Scholar 

  • Ross, E.M.and Gilman, A.G.(1980) Biochemical properties of hormone-sensi-tive adenylate cyclase. Annu.Rev.Biochem. 49,533–564.

    PubMed  CAS  Google Scholar 

  • Ross, E.M., Howlett, A.C., Ferguson, K.M., and Gilman, A.G.(1978) Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J.Biol.Chem. 253, 6406–6412.

    Google Scholar 

  • Roth, J.(1973) Peptide hormone binding to receptors: A review of direct studies in vitro. Metab.Clin.Exp. 22,1059–1073.

    PubMed  CAS  Google Scholar 

  • Scatchard, G.(1949) The attractions of proteins for small molecules and ions. Ann.NY Acad.Sci. 51, 660–672.

    CAS  Google Scholar 

  • Schwarzmeier, J.D.and Gilman, A.G.(1977) Reconstitution of catecholaminesensitive adenylate cyclase activity: Interaction of components following cell-cell and membrane-cell fusion. J.Cyclic Nucleotide Res. 3, 227–238.

    PubMed  CAS  Google Scholar 

  • Shorn, R.G.L., Lefkowitz, R.J., and Caron, M.G.(1981) Purification of the beta-adrenergic receptor: Idenification of the hormone binding subunit. J.Biol.Chem. 256, 5820–5826.

    Google Scholar 

  • Shorr, R.G.L., Strohsacker, M.W., Lavin, T.N., Lefkowitz, R.J., and Caron, M.G.(1982) The beta-1 adrenergic receptor of the turkey erythrocyte: Molecular heterogeneity revealed by purification and photoaffimity labeling. J.Biol.Chem. 257,12341–12350.

    PubMed  CAS  Google Scholar 

  • Stadel, J.M.(1985) Photoaffinity labeling of beta-adrenergic receptors. Pharmacol.Ther. 31, 57–77.

    PubMed  CAS  Google Scholar 

  • Stadel, J.M.and Lefkowitz, R.J.(1979) Multiple reactive sulfhydryl groups modulate the functions of adenylate cyclase-coupled beta-adrenergic receptors. Mol.Pharmacol. 16,709–718.

    PubMed  CAS  Google Scholar 

  • Stadel, J.M.and Lefkowitz, R.J.(1983) The beta-adrenergic receptor: Ligand binding illuminates the mechanism of receptor—adenylate cyclase coupling. Curr.Top.Memb.Transp. 18,45–66.

    CAS  Google Scholar 

  • Stadel, J.M., DeLean, A., and Lefkowitz, R.J.(1980) A high-affinity agonist beta-adrenergic receptor complex is an intermediate for catecholamine stimulation of adenylate cyclase in turkey and frog erythrocyte membranes. J.Biol.Chem. 255,1436–1441.

    PubMed  CAS  Google Scholar 

  • Stadel, J.M., Shorn, R.G.L., Limbird, L.E., and Lefkowitz, R.J.(1981) Evidence that a beta-adrenergic receptor-associated guanine nucleotide regulatory protein conveys guanosine 5’-0-(3-thiotriphosphate)-dependent adenylate cyclase activity. J.BioL Chem. 256, 8718–8723.

    PubMed  CAS  Google Scholar 

  • Stadel, J.M., DeLean, A., and Lefkowtiz, R.J.(1982) Molecular mechanisms of coupling in hormone receptor-adenylate cyclase systems. Adv.Enzymol. 53,1–43.

    PubMed  CAS  Google Scholar 

  • Stadel, J.M., Strulovici, B., Nambi, P., Lavin, T.N., Briggs, M.M., Caron, M.G., and Lefkowitz, R.J.(1983) Desensitization of the beta-adrenergic receptor of frog erythrocytes: Recovery and characterization of the down-regulated receptors in sequestered vesicles. J.Biol.Chem. 258, 3032–3038.

    PubMed  CAS  Google Scholar 

  • Staehelin, M.and Hertel, C.(1983) [3H]CGP-12177, a beta-drenergic ligand suitable for measuring cell surface receptors. J.Recept.Res. 3, 35–43.

    PubMed  CAS  Google Scholar 

  • Sternweis, P.C.and Gilman, A.G.(1979) Reconstitution of catecholamine-sensi-tive adenylate cyclase. J.Biol.Chem. 254, 3333–3340.

    PubMed  CAS  Google Scholar 

  • Stiles, G.L., Caron, M.G., and Lefkowitz, R.J.(1984) Beta-adrenergic receptors: Biochemical mechanisms of physiological regulation. Pharmacol.Rev. 64, 661–743.

    CAS  Google Scholar 

  • Sutherland, E.W., Rall, T.W., and Menon, T.(1963) Adenyl cyclase I.Distribution, preparation and properties. J.Biol.Chem. 237,1220–1227.

    Google Scholar 

  • Terasaki, W.L.and Brooker, G.(1978) [125I]Iodohydroxybenzylpindolol binding sites on intact rat glioma cells: Evidence for beta-adrenergic receptors of high coupling efficiency. J.Biol.Chem. 253, 5418–5425.

    PubMed  CAS  Google Scholar 

  • Toews, M.L.and Perkins, J.P.(1984) Agonist-induced changes in beta-adrenergic receptors on intact cells. J.Biol.Chem. 259, 2227–2235.

    PubMed  CAS  Google Scholar 

  • Toews, M.L., Harden, T.K., and Perkins, J.P.(1983) High-affinity binding of agonists to beta-adrenergic receptors on intact cells. Proc.Natl.Acad Sci.USA 80, 3553–3557.

    PubMed  CAS  Google Scholar 

  • Toews, M.L., Waldo, G.L., Harden, T.K., and Perkins, J.P.(1984) Relationship between an altered membrane form and a low-affinity form of the beta-adrenergic receptor occurring during catecholamine-induced desensitization: Evidence for receptor internalization. J.Biol.Chem. 259, 11844–11850.

    PubMed  CAS  Google Scholar 

  • Vauquelin, G.and Maguire, M.E.(1980) Inactivation of beta-adrenergic receptors by N-ethylmaleimide in S49 lymphoma cells: Agonist induction of functional receptor heterogeneity. Mol.Pharmacol. 18,362–369.

    CAS  Google Scholar 

  • Walsh, D.A., Perkins, J.P., and Krebs, E.G.(1968) An adenosine 3’, 5’ monophosphate-dependent protein kinase from rabbit skeletal muscle. J.Biol.Chem. 243,3763–3765.

    PubMed  CAS  Google Scholar 

  • Weiland, G.A.and Molinoff, P.B.(1981) Quantitative analysis of drug—receptor interactions I: Determination of kinetics and equilibrium properties. Life Sci. 29,313–330.

    PubMed  CAS  Google Scholar 

  • Weiland, G.A., Minneman, K.P., and Molinoff, P.B.(1980) Thermodynamics of agonist and antagonist interactions with mammalian beta-adrenergic receptors. Mol.Pharmacol 18, 341–347.

    CAS  Google Scholar 

  • Wessels, M.R., Mullikin, D., and Lefkowitz, R.J.(1978) Differences between agonist and antagonist binding following beta-adrenergic receptor desensitization. J.Biol.Chem. 253,3371–3373.

    PubMed  CAS  Google Scholar 

  • Williams, L.T.and Lefkowitz, R.J.(1977) Slowly reversible binding of catecholamine to a nucleotide-sensitive state of the beta-adrenergic receptor. J.Biol.Chem. 252, 7207–7213.

    PubMed  CAS  Google Scholar 

  • Williams, L.T.and Lefkowitz, R.J.(1978) Receptor Binding Studies in Adrenergic Pharmacology (Raven, New York).

    Google Scholar 

  • Williams, L.T., Mullikin, D., and Lefkowitz, R.J.(1978) Magnesium dependence of agonist binding to adenylate cyclase-coupled hormone receptors. J.Biol.Chem. 253, 2984–2989.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stadel, J.M., Lefkowitz, R.J. (1991). Beta-Adrenergic Receptors. In: Perkins, J.P. (eds) The Beta-Adrenergic Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0463-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0463-3_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6772-0

  • Online ISBN: 978-1-4612-0463-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics