Capture Problems For Coupled Random Walks

  • Maury Bramson
  • David Griffeath
Chapter
Part of the Progress in Probability book series (PRPR, volume 28)

Abstract

N predator random walks X k (t) stalk a prey random walk Y(t). By conspiring among themselves and observing their prey, the predators try to minimize the capture time T:
$$T = \min \{ t:{X_k}(t) = Y(t)\,{\text{for}}\,{\text{some}}\,k\}.$$

Keywords

Hull Dinates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Arratia, Limiting point processes for rending of coalescing and annihilating random walks on Z D, Ann. Probab. 9 (1981), 909–936.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    M. Bramson and J.L. Lebowitz, Asymptotic behavior of densities for two-particle annihilating random walks, to appear in J. Stat. Physics.Google Scholar
  3. [3]
    M. Bramson and D. Griffeath, Clustering and dispersion rates for some interacting particle systems on Z1, Ann. Probab. 8 (1980), 183–213.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    D.L. Burkholder, Exit times of Brownian motion, harmonic majorizaLion, and Hardy spaces, Adv. Math. 26 (1977), 182–205.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    R.D. De Blassie, Exit times from cones in Rn of Brownian motion, Z. Wahr. verw. Gebiete 74 (1987), 1–29.Google Scholar
  6. [6]
    E.B. Dynkin and A.A. Yushkevich, Markov Processes: Theorems and Problems, Plenum Press, NY, 1969.Google Scholar
  7. [7]
    D. Griffeath, Coupling methods for Markov processes, Studies in Probability and Ergodic Theory, ed. Rota. Academic Press, New York, NY, 1978, 1–43.Google Scholar
  8. [8]
    T. Lindvall and L.C.G. Rogers, Coupling of multidimensional diffusions by reflection, Ann. Probab. 14 (1986), 860–872.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    T.R. McConnell, Exit times of N-dimensional random walks, Z. Wahr. verw. Gebiete 67 (1984), 213–233.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    F. Spitzer, Some theorems concerning 2-dimensional Brownian motion, Trans. Amer. Math. Soc. 271 (1958), 719–731.MathSciNetGoogle Scholar
  11. [11]
    F. Spitzer, Principles of Random Walk, Graduate Texts in Mathematics 34. Springer-Verlag, New York, 1976.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Maury Bramson
    • 1
  • David Griffeath
    • 1
  1. 1.Department of MathematicsUniversity of WisconsinMadisonUSA

Personalised recommendations