Skip to main content

Part of the book series: Progress in Probability ((PRPR,volume 28))

Abstract

We obtain rigorous upper bounds on the critical exponent for self-avoiding polygons using probabilistic methods based on renewal processes and random walks.

Supported by a University Research Fellowship from NSERC of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.T. Chayes and L. Chayes, Random tubes as a model of pair correlations, Contemporary Mathematics 41 (1985) 11–41.

    Article  MathSciNet  Google Scholar 

  2. J.T. Chayes and L. Chayes, Percolation and random media, in Critical Phenomena, Random Systems and Gauge Theories; Les Houches, Session XLIII, K. Osterwalder and R. Stora (eds.). Elsevier, Amsterdam, Oxford, New York, 1986.

    Google Scholar 

  3. J.T. Chayes and L. Chayes, Ornstein-Zernike behavior for self-avoiding walks at all non-critical temperatures, Commun. Math. Phys. 105 (1986), 221–238.

    Article  MathSciNet  Google Scholar 

  4. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I ( 3rd edition ), Wiley, New York, 1968.

    MATH  Google Scholar 

  5. A.J. Guttmann, On the critical behaviour of self-avoiding walks, J. Phys. A 20 (1987), 1839–18M.

    Article  MathSciNet  Google Scholar 

  6. J.M. Hammersley, Percolation processes. II. The connective constant, Proc. Carob. Phil. Soc. 53 (1957), 642–645.

    Article  MATH  Google Scholar 

  7. J.M. Hammersley, The number of polygons on a lattice, Proc. Camb. Phil. Soc. 57 (1961), 516–523.

    Article  MATH  Google Scholar 

  8. J.M. Hammersley and D.J.A. Welsh, Further results on the rate of convergence to the connective constant of the hypercubical lattice, Quart. J. Math. Oxford Ser. 2 13 (1962), 108–110.

    Google Scholar 

  9. H. Kesten, On the number of self-avoiding walks, J. Math. Phys. 4 (1963), 960–969.

    Article  MATH  Google Scholar 

  10. H. Kesten, On the number of self-avoiding walks II, J. Math. Phys. 5 (1964), 1128–1137.

    Article  MATH  Google Scholar 

  11. J.C. Le Guillou and J. Zinn-Justin, Accurate critical exponents from field theory, J. Phys. France 50 (1989), 1365–1370.

    Article  Google Scholar 

  12. N. Madras and A.D. Sokal, The pivot algorithm: a highly efficient Monte Carlo algorithm for the self-avoiding walk, J. Stat. Phys. 50 (1988), 109–186.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Nienhuis, Exact critical exponents of 0(n) models in two dimensions, Phys. Rev. Lett. 49 (1982), 1062–1065.

    Article  MathSciNet  Google Scholar 

  14. B. Nienhuis, Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas,J. Stat. Phys. 34 (1984), 731–761.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Nummelin, General Irreducible Markov Chains and Non-negative Operators, Cambridge University Press, Cambridge, 1984.

    Book  MATH  Google Scholar 

  16. G. Slade, The scaling limit of self-avoiding random walk in high dimensions, Ann. Prob. 17 (1989), 91–107.

    Article  Google Scholar 

  17. F. Spitzer, Principles of Random Walk, Springer, New York, 1976.

    Book  MATH  Google Scholar 

  18. A.J. Stam, Renewal theory in r dimensions, Comp. Math. 23 (1971), 1–13.

    MATH  Google Scholar 

  19. S.G. Whittington, Statistical mechanics of polymer solutions and polymer adsorption, Adv. Chem. Phys. 51 (1982), 1–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Madras, N. (1991). Bounds on the Critical Exponent of Self-Avoiding Polygons. In: Durrett, R., Kesten, H. (eds) Random Walks, Brownian Motion, and Interacting Particle Systems. Progress in Probability, vol 28. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0459-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0459-6_20

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6770-6

  • Online ISBN: 978-1-4612-0459-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics