Skip to main content

Polylogarithms, Dedekind Zeta Functions, and the Algebraic K-Theory of Fields

  • Chapter
Arithmetic Algebraic Geometry

Part of the book series: Progress in Mathematics ((PM,volume 89))

Abstract

The Dedekind zeta function ζF(s) of an algebraic number field F is the most important invariant of F. Its Euler product tells how the unramified primes of Q split in F. Information about the ramified primes and about the behavior at infinity is contained in three integers Δ, n+ and n: the first is the absolute value of the discriminant of F and is a positive integer whose prime divisors are precisely the primes ramifying in F, and the other two (= r 1 + r 2 and r 2 in the standard notation) give the dimensions of the (+1)- and (− l)-eigenspaces of complex conjugation on \( F{ \otimes_{\mathbb{Q}}}\mathbb{R}\left( {{\mathbb{R}^{{{r_1}}}} \times {\mathbb{C}^{{{r_2}}}}} \right) \) . These invariants are in turn determined by ζF(s) via its functional equation

$$ \varsigma_F^{*}(s) : = {\Delta^{{ \frac{s}{2} }}}{\left( {{\pi^{{ - \frac{s}{2} }}}\Gamma \left( {\frac{s}{2}} \right)} \right)^{{{n_{ + }}}}}{\left( {{\pi^{{ - \frac{s}{2} }}}\Gamma \left( {\frac{{s + 1}}{2}} \right)} \right)^{{{n_{ - }}}}}{\varsigma_F}(s) = \varsigma_F^{*}\left( {1 - s} \right) $$
((1))

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abouzahra and L. Lewin, The polylogarithm in algebraic number fields, Journal of Number Theory 21 (1985), 214–244.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Abouzahra, L. Lewin and H. Xiao, Polylogarithms in the field of omega (a root of a given cubic): functional equations and ladders, Aeq. Math. 33 (1987), 23–45, and Addendum, Aeq. Math. 35 (1988), 304.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Beilinson, Polylogarithm and cyclotomic elements, preprint, M.I.T. 1990.

    Google Scholar 

  4. A. Borel, Cohomologie de SL n et valeurs de fonctions zêta aux points entiers, Ann. Sc. Norm. Sup. Pisa 4 (1977), 613–636.

    MathSciNet  MATH  Google Scholar 

  5. E.R. Canfield, P. Erdös and C. Pomerance, On a problem of Oppenheim concerning “Factorisatio Numerorum”, J. Number Th. 17 (1983), 1–28.

    Article  MATH  Google Scholar 

  6. P. Deligne, Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs, preprint, Princeton, 1990.

    Google Scholar 

  7. P. Erdös, C. Stewart and R. Tijdeman, Some diophantine equations with many solutions, Comp. Math. 66 (1988), 36–56.

    Google Scholar 

  8. A.B. Goncharov, The classical threelogarithm, algebraic K-theory of fields and Dedekind zeta functions, preprint, Moscow, 1990.

    Google Scholar 

  9. B. Gross, On the values of Artin L-functions, Brown, 1980.

    Google Scholar 

  10. L. Lewin, Polylogarithms and Associated Functions, North-Holland, New York, 1981.

    MATH  Google Scholar 

  11. L. Lewin, The order-independence of the polylogarithmic ladder structure—implications for a new category of functional equations, Aeq. Math. 30 (1986), 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Milnor, Hyperbolic geometry: the first 150 years, Bull. AMS 6 (1982), 9–24.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Neumann and D. Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985), 307–332.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, Contemp. Math. 55 (1986), 371–376.

    Article  MathSciNet  Google Scholar 

  15. A.A. Suslin, Algebraic K-theory of fields, in “Proceedings of the International Congress of Mathematicians 1986,” AMS, 1987, pp. 222–244.

    Google Scholar 

  16. Z. Wojtkowiak, A construction of analogs of the Bloch-Wigner function, Math. Scandin. (to appear).

    Google Scholar 

  17. D. Zagier, Hyperbolic manifolds and special values of Dedekind zeta functions, Inv. Math. 83 (1986), 285–302.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Zagier, The remarkable dilogarithm, J. Math. Phys. Sci. 22 (1988), 131–145.

    MathSciNet  MATH  Google Scholar 

  19. D. Zagier, The Bloch-Wigner-Ramakrishnan polylogarithm function, Math. Annalen 286 (1990), 613–624.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zagier, D. (1991). Polylogarithms, Dedekind Zeta Functions, and the Algebraic K-Theory of Fields. In: van der Geer, G., Oort, F., Steenbrink, J. (eds) Arithmetic Algebraic Geometry. Progress in Mathematics, vol 89. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0457-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0457-2_19

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6769-0

  • Online ISBN: 978-1-4612-0457-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics