Skip to main content

A Remark on the Dunkl Differential—Difference Operators

  • Chapter

Part of the Progress in Mathematics book series (PM,volume 101)

Abstract

Let E be a Euclidean vector space of dimension n with inner product (·,·). For each αE with (α, α) = 2 we write

$$ {r_{\alpha }}(\lambda ) = \lambda - (\alpha, \lambda )\alpha, \lambda \in E $$
((1.1))

for the orthogonal reflection in the hyperplane perpendicular to α.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4612-0455-8_8
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4612-0455-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. N. Bernstein, I. M. GePfand, and S. I. Gel’fand, Schubert cells and the cohomology of G/P, Russ. Math. Surveys 28 (1973), 1–26.

    MATH  CrossRef  Google Scholar 

  2. M. Demazure, Désingularisation des variétés de Schubert généralisés, Ann. Sc. Éc. Norm. Sup. 7 (1974), 53–88.

    MathSciNet  MATH  Google Scholar 

  3. M. Demazure Une nouvelle formule des caractères, Bulletin Sc. Math. 98 (1974), 163172.

    MathSciNet  Google Scholar 

  4. C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. AMS 311 (1989), 167–183.

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J.Math. 79 (1957), 87–120; also in the Collected Works, Vol. 2, 243–276

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. G. J. Heckman and E. M. Opdam, Root systems and hypergeometric functions I, Comp. Math. 64 (1987), 329–352.

    MathSciNet  MATH  Google Scholar 

  7. G. J. Heckman, Root systems and hypergeometric functions II, Comp. Math. 64 (1987), 353–373.

    MathSciNet  MATH  Google Scholar 

  8. G. J. Heckman Heche algebras and hypergeometric functions, Inv. Math. 100 (1990), 403–417.

    MathSciNet  MATH  CrossRef  Google Scholar 

  9. I. G. Macdonald, Some conjectures for root systems, Siam J. Math. Analysis 13 (1982), 988–1007.

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. J. Moser, Three integrable systems connected with isospectral deformation, Adv. Math. 16 (1975), 197–220.

    MATH  CrossRef  Google Scholar 

  11. M. A. Olshanetsky and A.M. Perelomov, Completely integrable systems connected with semisimple Lie algebras, Inv. Math. 37 (1976), 93–108.

    MathSciNet  MATH  CrossRef  Google Scholar 

  12. E. M. Opdam, Root systems and hypergeometric functions III, IV, Comp. Math. 67 (1988), 21–49 and 191–209..

    MathSciNet  MATH  Google Scholar 

  13. E. M. Opdam, Some applications of hypergeometric shift operators, Inv. Math. 98 (1989), 1–18.

    MathSciNet  MATH  CrossRef  Google Scholar 

  14. E. M. Opdam, Dunkl operators, Bessel functions and the discriminant for a finite Coxeter group, in preparation.

    Google Scholar 

  15. T. Yano and J. Sekiguchi, The microlocal structure of weighted homogeneouspolynomials associated with Coxeter systems I, II, Tokyo J. Math. 2 (1979), 193–219

    MathSciNet  MATH  CrossRef  Google Scholar 

  16. T. Yano and J. Sekiguchi, The microlocal structure of weighted homogeneouspolynomials associated with Coxeter systems I, II, Tokyo J. Math. 4 (1981), 1–34

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heckman, G.J. (1991). A Remark on the Dunkl Differential—Difference Operators. In: Barker, W.H., Sally, P.J. (eds) Harmonic Analysis on Reductive Groups. Progress in Mathematics, vol 101. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0455-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0455-8_8

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6768-3

  • Online ISBN: 978-1-4612-0455-8

  • eBook Packages: Springer Book Archive