Handling the Inverse Spherical Fourier Transform

Part of the Progress in Mathematics book series (PM, volume 101)


We use the standard notation and refer to [GV], [H] for more details. Let X = G/K be a Riemannian symmetric space of the noncompact type.


Spherical Function Weak Type Swiss National Science Foundation Riemannian Symmetric Space Real Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A1]
    J.-Ph. Anker, Le noyau de la chaleur sur les espaces symetriques U(p, q)/U(p) X V(q), Harmonic analysis, Luxembourg 1987, Lecture Notes Math., Vol 1359 (P. Eymard, J.-P. Pier, eds.), Springer-Verlag, 1988, pp. 60-82.Google Scholar
  2. [A2]
    J.-Ph. Anker, The spherical Fourier transform of rapidly decreasing functions — a simple proof of a characterization due to Harish-Chandra, Helgason, Trombi and Varadarajan, J. Funct. Anal. 96 (1991), 331-349.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [A3]
    J.-Ph. Anker, Lp Fourier multipliers on Riemannian symmetric spaces of the noncom-pact type, Ann. Math. 132 (1990), 597–628.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [A4]
    J.-Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, preprint (1990).Google Scholar
  5. [AL]
    J.-Ph. Anker and N. Lohoué, Multiplicateurs sur certains espaces symétriques, Amer. J. Math. 108 (1986), 1303–1354.CrossRefGoogle Scholar
  6. [B]
    D. Bakry, Etude des transformations de Riesz dans les variétes Riemmanniennes à courbure de Ricci minorée, Séminaire de probabilites XXI, Lecture Notes Math., Vol. 1247 (J. Azéma, P. A. Meyer, and M. Yor, eds.), Springer Verlag, 1987, pp. 137–172Google Scholar
  7. [CG]
    M. Cowling, G. Gaudry, S. Giulini, and G. Mauceri, Weak type (1,1) estimates for heat kernel maximal functions on Lie groups, Trans. Amer. Math. Soc. 323 (1991), 637–649.MathSciNetzbMATHGoogle Scholar
  8. [CS]
    J.-L. Clerc and E. M. Stein, L P - multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. USA 71 (1974), 3911–3912.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [E]
    M. Eguchi, Asymptotic expansions of Eisenstein integrals and Fourier transform on symmetric spaces, J. Funct. Anal. 34 (1979), 167–216.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [F]
    M. Flensted-Jensen, Spherical functions on a real semisimple Lie group; a method of reduction to the complex case, J. Funct. Anal. 30 (1978), 106–146.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [GV]
    R. Gangolli and V. S. Varadarajan, Harmonic analysis of spherical functions on real reductive groups, Ergebnisse Math. Grenzgeb. 101, Springer Verlag, 1988.Google Scholar
  12. [H]
    S. Helgason, Groups and geometric analysis — integral geometry, invariant differential operators, and spherical functions, Academic Press, 1984.zbMATHGoogle Scholar
  13. [K]
    T. H. Koornwinder, Jacobi functions and analysis on noncompact semisimple groups, Special functions — group theoretical aspects & applications (R. A. Askey, T. H. Koornwinder, and W. Schempp, eds.), D. Reidel Publ. Co., 1984, pp. 1–85.Google Scholar
  14. [L1]
    N. Lohoué, Comparaison des champs de vecteurs et des puissances du Laplacien sur les varietes Riemanniennes a courbure non positive, J. Funct. Anal. 61 (1985), 164–201.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [L2]
    N. Lohoué, Transformées de Riesz et fonctions de Littlewood-Paley sur les groupes non moyennables, C. R. Acad. Sci. Paris Serie I, 306 (1988), 327–330.Google Scholar
  16. [LZ]
    N. Lohoué and Zhu Fu Liu, Estimation faible de certaines fonctions maximales, C. R. Acad. Sci. Paris Serie I, 302 (1986), 303–305.zbMATHGoogle Scholar
  17. [Se]
    M. A. Semenov-Tjan-Sanskff, Harmonic analysis on Riemannian symmetric spaces of negative curvature and scattering theory, Math. USSR Izvestija 10 (1976), 535–563.CrossRefGoogle Scholar
  18. [Sh]
    M. M. Shahshahani, Invariant hyperbolic systems on symmetric spaces, Differential Geometry, Progress in Math. 32 (R. Brooks, A. Gray, and B. L. Reinhart, eds.), Birkhäuser, 1983, pp. 203–233.Google Scholar
  19. [ST]
    R. J. Stanton and P. A. Tomas, Expansions for spherical functions on noncompact symmetric spaces, Acta Math. 140 (1978), 251–276.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [St]
    E. M. Stein, Topics in harmonic analysis related to the Littlewood - Paley theory, Ann. Math. Stud. 63, Princeton Univ. Press, 1970.Google Scholar
  21. [T]
    M. E. Taylor, L P estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), 773–793.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [TV]
    P. C. Trombi and V. S. Varadarajan, Spherical transforms on semisimple Lie groups, Ann. Math. 94 (1971), 246–303.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [V]
    L. Vretare, On a recurrence formula for elementary spherical functions on symmetric spaces and its applications to multipliers for the spherical Fourier transform, Math. Scand. 41 (1977), 99–112.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  1. 1.Princeton University and Cornell UniversityFrance

Personalised recommendations