On Jacquet Modules of Induced Representations of p—Adic Symplectic Groups

Part of the Progress in Mathematics book series (PM, volume 101)


We fix a reductive p-adic group G. One very useful tool in the representation theory of reductive p-adic groups is the Jacquet module. Let us recall the definition of the Jacquet module. Let (π, V) be a smooth representation of G and let P be a parabolic subgroup of G with a Levi decomposition P = MN. The Jacquet module of V with respect to N is \( {V_N} = V/spa{n_{\mathbb{C}}}\left\{ {\pi (n)v - v;n \in N,v \in V} \right\} \).


Hopf Algebra Parabolic Subgroup Grothendieck Group Cuspidal Representation Maximal Parabolic Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BDK]
    J. Bernstein, P. Deligne, and D. Kazhdan, Trace Paley-Wiener theorem for reductive p-adic groups, J. Analyse Math 47 (1986), 180–192.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [BZ]
    J. Bernstein and A.V. Zelevinsky, Induced representations of reductive p-adic groups I, Ann. Sci. École Norm. Sup. 10 (1977), 441–472.MathSciNetzbMATHGoogle Scholar
  3. [C]
    W. Casselman, Intro, to the theory of admisssible representations, preprint.Google Scholar
  4. [DKV]
    P. Deligne, D. Kazhdan, M.-F. Vigneras, Representations des algebres centrales simples p-adiques, Representations des Groupes Reductifs sur un Corps Local, Hermann, Paris, 1984.Google Scholar
  5. [F]
    D. K. Faddeev, On multiplication of representations of classical groups over a finite field with representations of the full linear group, Vestnik Lenigradskogo Universiteta 13 (1976), 35–40. (Russian)Google Scholar
  6. [G]
    R. Gustafson, The degenerate principal series for Sp(2n), Memoirs of the AMS 248 (1981).Google Scholar
  7. [R1]
    F. Rodier, Décomposition de la série principale des groupes réductifs p-adiques, Non-Commutative Harmonic Analysis, Lecture Notes in Mathematics, Vol. 880, Springer-Verlag, Berlin-Heidelberg-New York, 1981.Google Scholar
  8. [R2]
    F. Rodier, Sur les representations non ramifiees des groupes reductifs p-adiques; Vexample de GSp(4), Bull. Soc. Math. France 116 (1988), 15–42.MathSciNetzbMATHGoogle Scholar
  9. [ST]
    P. J. Sally, M. Tadic, On representations of non-archimedean GSp(2), manuscript.Google Scholar
  10. [S1]
    F. Shahidi, A proof of Langlands conjecture on Plancherel measure; comple-mentary series for p-adic groups, Annals of Math (2) 132 (1990), 273–330.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [S2]
    F. Shahidi, Langlands’ conjecture on Plancherel measures for p-adic groups, these proceedings.Google Scholar
  12. [T]
    M. Tadic, Induced representations of GL(n,A) for p-adic division algebras A, J. reine angew. Math. 405 (1990), 48–77.MathSciNetzbMATHGoogle Scholar
  13. [W]
    J.-L. Waldspurger, Un exercice sur GSp(4, F) et les representations de Weil, Bull. Soc. Math.France 115 (1987), 35–69.MathSciNetzbMATHGoogle Scholar
  14. [Z1]
    A. V. Zelevinsky, Induced representations of reductive p-adic groups II, On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. 13 (1980), 165–210.MathSciNetzbMATHGoogle Scholar
  15. [Z2]
    A. V. Zelevinsky, Representations of Finite Classical Groups, A Hopf Algebra Approach, Lecture Notes in Math., Vol. 869, Springer-Verlag, Berlin-Heidelberg-New York, 1981.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ZagrebZagrebYugoslavia

Personalised recommendations