Advertisement

Transfer and Descent: Some Recent Results

Chapter
  • 569 Downloads
Part of the Progress in Mathematics book series (PM, volume 101)

Abstract

A basic tool for studying the transfer of representations is the dual transfer of orbital integrals. In this paper we report on some recent results for orbital integrals and, in particular, on a descent theorem [LS3].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CD]
    L. Clozel and P. Delorme, Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs, Inv. Math. 77 (1984), 427–453.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [Hi]
    T. Hales, The subregular germ of orbital integrals, Thesis, Princeton University.Google Scholar
  3. [H2]
    T. Hales, Orbital integrals on U(3), to appear.Google Scholar
  4. [H3]
    T. Hales, Shalika germs on GSp(4), Astérisque, Nos. 171-172 (1989), 195–256.Google Scholar
  5. [K]
    R. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), 365-399.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [KS]
    R. Kottwitz and D. Shelstad, Twisted endoscopy, in preparation.Google Scholar
  7. [LS1]
    R. Langlands and D. Shelstad, On the definition of transfer factors. Math. Ann. 278 (1987), 219-271.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [LS2]
    R. Langlands, Orbital integrals on forms of 5L(3), II, Can. J. Math. XLI (1989), 480–507.MathSciNetCrossRefGoogle Scholar
  9. [LS3]
    R. Langlands, Descent for transfer factors, The Grothendieck Festschrift, vol II, BirkHäuser, Boston, 1991, pp. 485–563.Google Scholar
  10. [S1]
    D. Shelstad, L-indistinguishability for real groups, Mathematische Annalen 259 (1982), 385-430.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [S2]
    D. Shelstad, A formula for regular unipotent germs, Astérisque 171–172 (1989), 275–277.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceRutgers UniversityNewarkUSA

Personalised recommendations