Skip to main content

Three Tensor Norms for Operator Spaces

  • Chapter
  • 344 Accesses

Part of the book series: Progress in Mathematics ((PM,volume 84))

Abstract

The purpose of these notes is to give a survey of some of the results, questions, and applications surrounding three tensor norms which occur in the non-self adjoint theory of operator algebras. The first norm we will focus on is the Haagerup norm on tensor products of subspaces of C* -algebras (which we call operator spaces). This portion of our talk includes some joint work with R.R. Smith [18]. The other tensor norms are the min and max norms on tensor products of non-selfadjoint operator algebras, which includes some joint work with S.C. Power ([16] and [17]).

Research supported in part by a grant from the NSF.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Ando, On a pair of commutative contractions, Acta Sci. Math. 24 (1963), 88–90.

    MathSciNet  MATH  Google Scholar 

  2. J.A. Ball and I. Gohberg, A commutant lifting theorem for triangular matrices with diverse applications, J. Int. Eng. and Op. Thy. 8 (1985), 205–267.

    MathSciNet  MATH  Google Scholar 

  3. D. Blecher, The Geometry of the Tensor Product of C*-algebras, Ph.D. Thesis, University of Edinborough, 1988.

    Google Scholar 

  4. M.D. Choi and E.G. Effros, Injectivity and operator spaces, J. Funct. Anal. 24 (1977), 156–209.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Christensen, E.G. Effros, and A.M. Sinclair, Completely bounded maps and C*-algebraic cohomology, Inventiones Math. 90 (1987), 279–296.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Christensen and A.M. Sinclair, Representations of completely bounded multilinear operators, J. Funct. Anal. 72 (1987), 151–181.

    Article  MathSciNet  MATH  Google Scholar 

  7. M.J. Crabb and A.M. Davie, von Neumann’s inequality for Hilbert space operators, Bull. London Math. Soc. F (1975), 49–50.

    Google Scholar 

  8. E.G. Effros, Advances in quantized functional analysis, Proc. I.C.M. Berkeley, 1986.

    Google Scholar 

  9. E.G. Effros, On multilinear completely bounded maps, Contemp. Math. 62 (1987), 450–479.

    MathSciNet  Google Scholar 

  10. E.G. Effros and A. Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiana Math. J. 36 (1987), 257–276.

    Article  MathSciNet  MATH  Google Scholar 

  11. U. Haagerup, All nuclear C*-algebras are amenable, preprint, 1981.

    Google Scholar 

  12. U. Haagerup, Injectivity and decomposition of completely maps, Lecture Notes in Math., 1132, Springer-Verlag, Berlin, 1983, 170–222.

    Google Scholar 

  13. U. Haagerup, The Grothenedieck inequality for bilinear forms on C*-algebras, Adv. in Math. 56 (1985), 93–116.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Parrott, Unitary dilations for. commuting contractions, Pacific J. Math. 34 (1970), 481–490.

    Article  MathSciNet  MATH  Google Scholar 

  15. V.I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics 146, Longman, London, 1986.

    Google Scholar 

  16. V.I. Paulsen and S.C. Power, Lifting theorems for nest algebras, J. Operator Theory, to appear.

    Google Scholar 

  17. V.I. Paulsen and S.C. Power, Tensor products of non-selfadjoint operator algebras, Rocky Mountain Math. J., to appear.

    Google Scholar 

  18. V.I. Paulsen and R.R. Smith, Multilinear maps and tensor norms on operator systems, J. Funct. Anal. 73 (1987), 258–276.

    Article  MathSciNet  MATH  Google Scholar 

  19. Z.J. Ruan, Subspace of C*-algebras, J. Funct. Anal. 76 (1988), 217–230.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Sz-Nagy and C. Foias, Harmonic Analysis of Operators of Hilbert Space, American Elsevier, New York, 1970.

    MATH  Google Scholar 

  21. N.Th. Varopoulos, On an inequality of von Neumann and an application of the metric theory of tensor products to operator theory, J. Funct. Anal. 16 (1974), 83–100.

    Article  MathSciNet  MATH  Google Scholar 

  22. E.G. Effros and Z.J. Ruan, On matricially normed spaces, Pacific J. Math. 132 (1988), 243–264.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paulsen, V.I. (1991). Three Tensor Norms for Operator Spaces. In: Araki, H., Kadison, R.V. (eds) Mappings of Operator Algebras. Progress in Mathematics, vol 84. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0453-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0453-4_14

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6767-6

  • Online ISBN: 978-1-4612-0453-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics